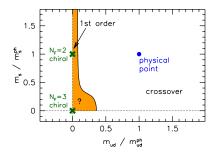
Chiral transition using the Banks-Casher relation

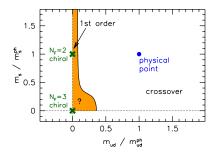
Gergely Endrődi, Lukas Gonglach

Goethe University of Frankfurt

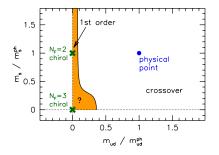
Lattice '18, 26. July 2018



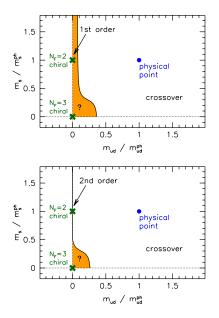
 nature of chiral transition as function of m_{ud} and m_s



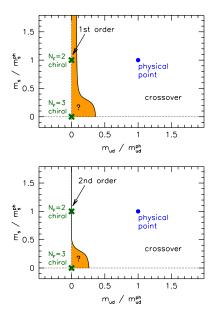
- nature of chiral transition as function of m_{ud} and m_s
- crossover at physical point
 [Aoki et al '06, Bhattacharya et al '14]



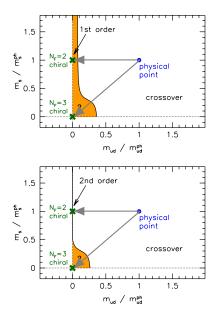
- nature of chiral transition as function of m_{ud} and m_s
- crossover at physical point [Aoki et al '06, Bhattacharya et al '14]
- 1st order region around origin?
 [Pisarski, Wilczek '84]



- nature of chiral transition as function of m_{ud} and m_s
- crossover at physical point
 [Aoki et al '06, Bhattacharya et al '14]
- 1st order region around origin?
 [Pisarski, Wilczek '84]
- relevant for: U(1)_A symmetry, critical endpoint at µ_B > 0



- nature of chiral transition as function of m_{ud} and m_s
- crossover at physical point
 [Aoki et al '06, Bhattacharya et al '14]
- 1st order region around origin?
 [Pisarski, Wilczek '84]
- relevant for: U(1)_A symmetry, critical endpoint at µ_B > 0
- $m \rightarrow 0$ limit controversial



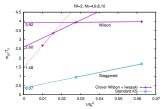
- nature of chiral transition as function of m_{ud} and m_s
- crossover at physical point
 [Aoki et al '06, Bhattacharya et al '14]
- 1st order region around origin?
 [Pisarski, Wilczek '84]
- relevant for: U(1)_A symmetry, critical endpoint at µ_B > 0
- $m \rightarrow 0$ limit controversial
- here: learn about the chiral limit using a novel technique

Outline

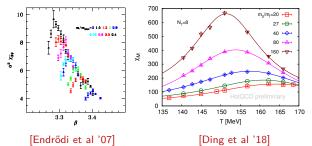
- problems of the chiral limit
- new approach
 - Banks-Casher relation
 - determination of the spectral density
 - chiral extrapolations
- results
- conclusions

Towards the chiral limit

 with unimproved actions: critical point with huge lattice artefacts [de Forcrand, D'Elia '17]

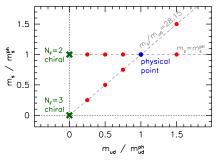


with improved actions: no critical point only strengthening



Strategy

attempt an extrapolation to the chiral limit directly



chiral condensate

$$\left\langle \bar{\psi}\psi(\mathbf{m})\right\rangle_{\mathbf{m}} = \frac{1}{Z_{\mathbf{m}}}\int \mathcal{D}U \, e^{-S_{g}} \det[\mathbf{D} + \mathbf{m}] \operatorname{tr}[(\mathbf{D} + \mathbf{m})^{-1}]$$

- $m \rightarrow 0$ using Banks-Casher relation [Banks,Casher '80]
- $m \rightarrow 0$ using leading-order reweighting

 \blacktriangleright in the eigenbasis of $ot\!\!/$, the condensate $ar\psi\psi\propto {
m tr}({
ot\!\!/} +m)^{-1}$

$$\bar{\psi}\psi(m) = \frac{T}{V}\sum_{i}\frac{m}{\lambda_{i}^{2}+m^{2}} \xrightarrow{V\to\infty} \int_{-\infty}^{\infty} d\lambda \,\rho(\lambda) \,\frac{m}{\lambda^{2}+m^{2}} \xrightarrow{m\to0} \pi \,\rho(0)$$

▶ the eigenvalues contain much more information than just $\bar{\psi}\psi(m)$, they encode also its dependence on *m*

Leading-order reweighting

• reweight configurations towards m = 0

$$\langle \rho(\lambda) \rangle_{0} = \frac{\langle \rho(\lambda) W(m) \rangle_{m}}{\langle W(m) \rangle_{m}}$$

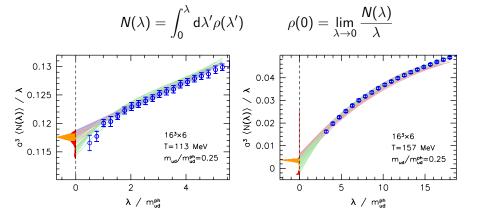
with

$$W(\mathbf{m}) = \frac{\det[\mathbf{p}]}{\det[\mathbf{p} + \mathbf{m}]} = \exp\left[-\frac{V}{T}\mathbf{m} \cdot \bar{\psi}\psi(\mathbf{m}) + \mathcal{O}(\mathbf{m}^4)\right]$$

work with the so reweighted spectral density in the following

Spectral density

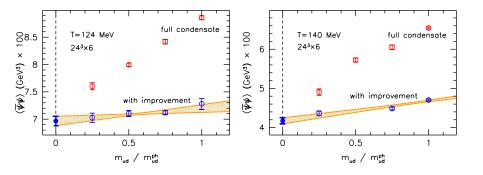
• find $\rho(0)$ via extrapolation of integrated spectral density



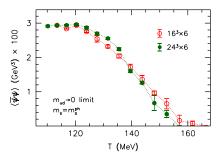
 build histogram of intersects to define mean and systematic error of fit

Extrapolations

Fremaining m_{ud} -dependence much smaller than in the full condensate $\left< \bar{\psi}\psi(m) \right>_m$

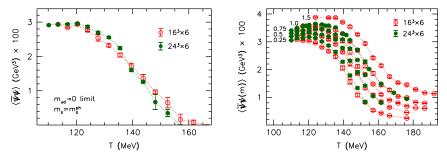


Chiral transition



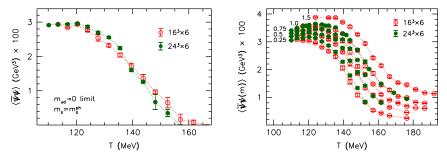
- ► sharpening of the order parameter as V grows ~> real phase transition?
- chiral transition temperature at crossing point of two volumes: $T_c^{N_f=2+1} \approx 140 \text{ MeV}$

Chiral transition



- ► sharpening of the order parameter as V grows → real phase transition?
- chiral transition temperature at crossing point of two volumes: $T_c^{N_f=2+1} \approx 140 \text{ MeV}$
- the same signal is hidden in the full condensate

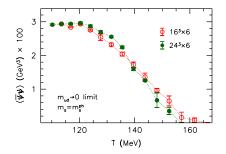
Chiral transition

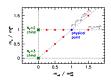


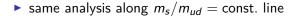
- ► sharpening of the order parameter as V grows → real phase transition?
- ► chiral transition temperature at crossing point of two volumes: $T_c^{N_f=2+1} \approx 140 \text{ MeV}$
- the same signal is hidden in the full condensate

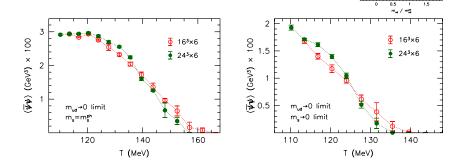
• for
$$\left< ar{\psi} \psi(m=0) \right>$$
, no additive renormalization necessary

• same analysis along $m_s/m_{ud} = \text{const.}$ line

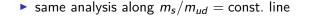


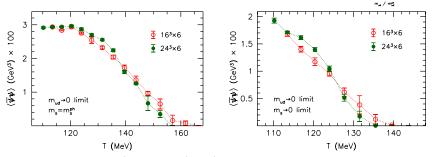






້ະ -ເ_{0.5}

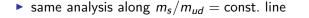


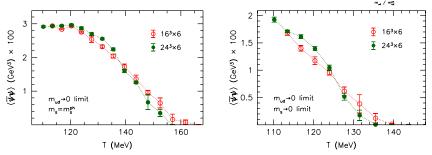


ڈ ۱ د 0.5

 vacuum condensate reduced consistent with xPT [Moussalam '99, Descotes et al '99]

1.5

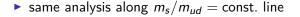


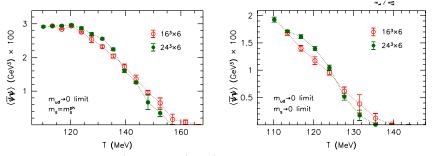


មែ -៩_{0.5}

- vacuum condensate reduced consistent with \(\chi PT\) [Moussalam '99, Descotes et al '99]
- ► volume-dependence more pronounced ~→ stronger transition?

1.5



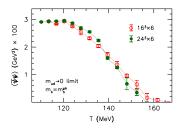


ڈ ۱ د 0.5

- vacuum condensate reduced consistent with xPT [Moussalam '99, Descotes et al '99]
- volume-dependence more pronounced ~> stronger transition?
- chiral transition is reduced to $T_c^{N_f=3} \approx 125$ MeV

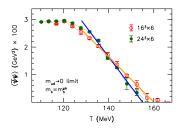
1.5

fit for slope of order parameter



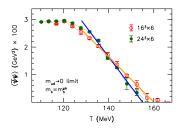
 \blacktriangleright critical scaling: $\bar{\psi}\psi'_{\mathcal{T}=\mathcal{T}_c}\xrightarrow{V\to\infty}\infty$

fit for slope of order parameter

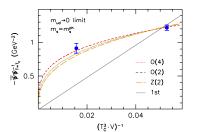


 \blacktriangleright critical scaling: $\bar{\psi}\psi'_{\mathcal{T}=\mathcal{T}_c}\xrightarrow{V\to\infty}\infty$

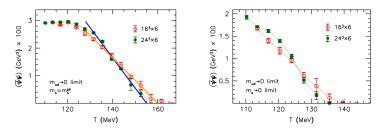
fit for slope of order parameter



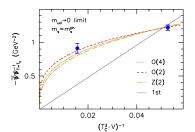
▶ critical scaling: $\bar{\psi}\psi'_{T=T_c} \xrightarrow{V \to \infty} \infty$



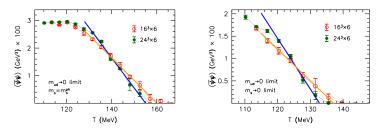
fit for slope of order parameter



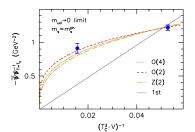
▶ critical scaling: $\bar{\psi}\psi'_{T=T_c} \xrightarrow{V \to \infty} \infty$



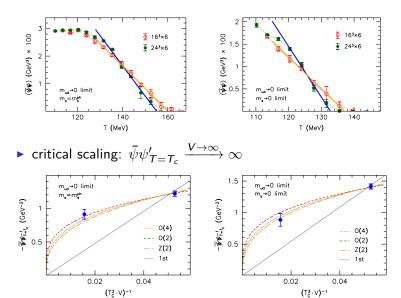
fit for slope of order parameter



▶ critical scaling: $\bar{\psi}\psi'_{T=T_c} \xrightarrow{V \to \infty} \infty$



fit for slope of order parameter



Summary

 extract chiral condensate via Banks-Casher relation
 → flat extrapolation

 finite volume analysis of chiral condensate (no additive renormalization required)

 N_F = 2 + 1 chiral limit consistent with O(4) scenario

