Analysis of systematic error in hadronic vacuum polarization contribution to muon g-2

Eigo Shintani (RIKEN-CCS)

with Yoshinobu Kuramashi (Tsukuba) and PACS collaboration

Contents

- I. Introduction & background
- 2. Setup
- 3. Finite volume study
- 4. Lattice artifact study
- 5. Summary

1. Introduction & background

Motivation

▶ HVP contribution to muon g-2

Target precision is < 1% in LQCD

Dispersion approach(N_f =5) using R-ratio (e+e-): $a_{\mu}^{HLO} = 688.6(4.3) \times 10^{-10} \Rightarrow 0.6 \%$ precision Jegerlehner, 1511.04473

Independent check in LQCD is important.

QCD uncertainty is comparable with BNL experimental uncertainty.

$$Err[a_{\mu}^{BNL}] = 6.3 \times 10^{-10}$$

Will be factor 5 improvement in the new experiment in FNAL, JPARC

Need to improve the precision to \sim 0.5% of HVP muon g-2 in the SM.

 \Rightarrow search the new physics in muon g-2 anomaly (~3 σ deviation)

1. Introduction & background g-2 with time-slice integral

► Time-momentum rep. (TMR) method Bernecker, Meyer, EPL A47(2011)

$$a_{\mu}^{\rm HLO} = \int_0^{\infty} W_t(t)G(t), \quad G(t) = \int d^3x \langle V_i(x)V_i(0)\rangle$$

$$W_t(t) = 4\alpha^2 m_{\mu} t^3 \hat{K}(t)$$

$$\hat{K}(t) = \frac{2}{m_{\mu} t^3} \int_0^{\infty} \frac{d\omega}{\omega} K_E(\omega^2) \left[\omega^2 t^2 - 4\sin^2(\omega t/2)\right]$$

Vector current correlator <VV>(t) without momentum.

Possible uncertainties in both long and short distances

- FV effect and t_{cut} truncation error.
- Large statistical noise in long distance.
- Lattice artifact in short time-slice.

1. Introduction & background

Our strategy

FV effect

- Using the new PACS configs., which are large box size L > 10 fm, in the physical pion.
- \blacktriangleright Two volumes at same cut-off \Rightarrow direct estimate of FV effect
- Statistical noise
 - Dptimized AMA technique in Wilson-clover Mainz, NPB914 (2017)
 - ▶ Volume scaling of $S/N \Rightarrow large volume can reduce noise$
- Lattice artifact
 - Comparison with different cut-off.
 - Test of operator dependence

Here we calculate connected HVP contribution only.

Update

▶ Previous study on 96⁴ and 64⁴ lattice

PACS 1805.04250

- Attempt LQCD estimate of FV.
- 96⁴ lattice: I 45 MeV pion
 64⁴ lattice: I 35 MeV pion
 ⇒ chiral extrapolation
- a_{μ} [L=8.1fm] a_{μ} [L=5.4fm] = (10±26) in 145 MeV
- LQCD does not disagree with ChPT, but statistical error is still large.

New PACS ensemble, which is L>10 fm in 135 MeV pion.

⇒ direct estimate of FV

PACS10 configuration

- Iwasaki gauge + stout smeared clover fermion
- ▶ Physical pion mass in $N_f = 2+1$
- Old configuration
 - \bullet 64⁴, a⁻¹=2.33 GeV, m_{\pi}=139 MeV and 135 MeV(reweighted)
- ▶ New configuration generation (PACS10) PACS, 1807.06237
 - $I28^4$, $a^{-1}=2.33$ GeV, $m_{\pi}=135$ MeV
 - $I60^4$, $a^{-1}=3.06$ GeV, $m_{\pi}=135$ MeV

Using PACS10 configs., we can study

- \triangleright Direct estimate of FV effect on L=5.4 fm in m_{π} =135 MeV
- \triangleright Cut-off effect on L>10 fm box in m_{π} =135 MeV

All data is still preliminary!

Effective mass

- In t > I fm, effective mass of vector channel is below rho meson mass.
- $E_{\pi\pi}^{\text{free}} < m_v < m_\rho$

$$E_{\pi\pi}^{\text{free}} = 2\sqrt{m_{\pi}^2 + (2\pi/L)^2}$$

Volume scaling of stat. error

- Volume scaling of statistical error in long-distance, t > 1.5 fm
- Volume scaling is universal in different cut-off.
 - ⇒ depending on physical volume

3. Finite volume study

Comparison with 128⁴ and 64⁴

- Backward propagation state significantly affects in T/a=64 from t~2 fm(~T/2)
 ⇒ check with extended temporal boundary PACS 1805.04250
- LQCD estimate of FV correction is larger than ChPT at t>1.5 fm

3. Finite volume study

FV effect in L=5.4 fm

T-sum, T/a= I 28, extended t

PACS 1805.04250

Mass correction (4 MeV) agrees with ChPT.

LQCD (
$$t_{cut} = 3 \text{fm}$$
):
 $a_{\mu}[L=10.8 \text{fm}] - a_{\mu}[L=5.4 \text{fm}] = 40(18)$, ChPT: $14 \Rightarrow \sim 2.5 \times 10^{-2}$ underestimate

3. Finite volume study

FV in Strange

FV in strange is negligibly small.

⇒ light quark contribution is dominant

Comparison with a⁻¹=2.33 and 3.06 GeV

- Comparison between locallocal and localconserved(point-splitting) current.
- Local-local has good scaling rather than local-conserved one at t ~ I fm.

Comparison with a⁻¹=2.33 and 3.06 GeV

- Small scaling violation in local-local current even without improvement.
- In local-conserved current, one can see 4—5 % cut-off effect in ud and s.

LQCD and phenomenology

- Compared to R-ratio, LQCD has large value at t < 3fm.
- From t ~ 3fm, R-ratio is relatively large, whose integral from $t=3--\infty$ gives ~3% contribution in total a_{μ} .

a_u in LQCD and phenomenology

- t_{cut}>2.5 fm, we can see LQCD overshoot phenomenological estimate.
- t_{cut} > 3 fm, LQCD is saturated around $a_{\mu}^{Exp} - a_{\mu}^{QED+EW+LbL}$ ("no new physics")

Cut-off effect in a_u

- Estimate at t_{cut} = 3.5 fm, which may be ~1% truncation error.
- Scaling violation is not observed in local-local current beyond statistical error.
- LQCD will not favor phenomenological value.
- Continuum limit is mandatory, but not yet.

4. Summary

Outlook

- Updated result of FV study in LQCD.
 PACS 1805.04250
- FV study at physical pion
 - At $t_{cut} = 3 \text{fm}$, LQCD estimate is ~2.5x larger than ChPT.
 - Possible impact to other LQCD estimate of FV based on ChPT.
- Lattice artifact study
 - Compared to two different cut-off
 - Scaling violation is small even in local-local current on PACS10, while local-conserved has large effect (4—5 %).

Next work

- $a_{\mu}^{\text{ud}} + a_{\mu}^{\text{s}}$ in LQCD is close to $a_{\mu}^{\text{Exp}} a_{\mu}^{\text{QED+EW+LbL}}$ ("no new physics")
- Missing $a_{\mu}^{c} + a_{\mu}^{disc}$, but may be <1%, since $|a_{\mu}^{c}| \sim -|a_{\mu}^{disc}| \sim 1\%$
- Continuum limit is necessary for final result, need one more cut-off.

Backup

Backup

Operator dependence

