Calculation of $K \rightarrow \pi l \nu$ form factor in $N_{f}=2+1$ QCD at physical point on $(10 \mathrm{fm})^{3}$ volume

Junpei Kakazu
University of Tsukuba

K.-I. Ishikawa, N. Ishizuka, Y. Kuramashi,Y. Nakamura, Y. Namekawa, Y. Taniguchi, N. Ukita,T. Yamazaki, and T. Yoshie (PACS Collaboration)

Introduction

CKM matrix unitarity check (up quark row)

$$
\Delta_{u} \equiv\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}-1
$$ If CKM matrix is unitary,

$$
\Delta_{u}=0
$$

In recent result of CKM matrix element (PDG 2018)
M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018).

$$
\begin{array}{ll}
\left|V_{u d}\right|=0.97420(21) & \quad \begin{array}{l}
\text { from superallowed nuclear } \beta \text { decay } \\
\text { Hardy and Towner Pos CKM2016, 028 (2016). }
\end{array} \\
\left|V_{u s}\right|=0.2231(8) & \begin{array}{c}
\text { from combination experiment and semileptonic } \\
\text { decay form factor by } \mathrm{N}_{\mathrm{f}}=2+1 \text { lattice calculations }
\end{array} \\
\left|V_{u s}\right|=0.2253(7) \quad \begin{array}{l}
\text { from combination experiment and the ratio of } \\
\text { decay constants } \mathrm{f}_{\mathrm{k}} / \mathrm{f}_{\pi} \text { by } \mathrm{N}_{\mathrm{f}}=2+1 \text { lattice calculations }
\end{array}
\end{array}
$$

$$
\left|V_{u b}\right|=3.94(36) \times 10^{-3} \quad \text { from combination of inclusive and exclusive }
$$

Introduction

there is difference between "unitarity" and PDG (FF)'s by 2σ uncertainty from lattice calculation chiral extrapolation, interpolation (extrapolation) to the zero momentum transfer, finite size effect etc \cdots
Purpose
calculation the semileptonic ($\mathrm{K} \rightarrow \pi \mid \nu$) form factor at physical point on the large volume

Construction of form factors

Semileptonic form factor

vector form factor $\left\langle\pi\left(\overrightarrow{p_{\pi}}\right)\right| V_{\mu}\left|K\left(\overrightarrow{p_{K}}\right)\right\rangle=\left(p_{K}+p_{\pi}\right)_{\mu} f_{+}\left(q^{2}\right)+\left(p_{K}-p_{\pi}\right)_{\mu} f_{-}\left(q^{2}\right)$ scalar form factor

$$
\begin{aligned}
& f_{0}\left(q^{2}\right)=f_{+}\left(q^{2}\right)+\frac{-q^{2}}{\left(m_{K}^{2}-m_{\pi}^{2}\right)} f_{-}\left(q^{2}\right)=f_{+}\left(q^{2}\right)\left(1+\frac{-q^{2}}{\left(m_{K}^{2}-m_{\pi}^{2}\right)} \xi\left(q^{2}\right)\right) \\
& \left(\xi\left(q^{2}\right)=\frac{f_{-}\left(q^{2}\right)}{f_{+}\left(q^{2}\right)}\right) \\
& \text { At q}
\end{aligned}
$$

to construct form factors, we calculate vector current 3point functions and 2point functions

$$
\begin{array}{r}
C_{\mu}^{X Y}\left(\overrightarrow{P^{\prime}}, \vec{P}\right)=\frac{Z_{Y}\left(\overrightarrow{P^{\prime}}\right) Z_{X}(\vec{P})}{4 E_{Y}\left(\overrightarrow{P^{\prime}}\right) E_{X}(\vec{P})} \frac{1}{Z_{v}} \times\left\langle Q\left(\overrightarrow{P^{\prime}}\right)\right| V_{\mu}|X(\vec{P})\rangle \exp \left(-E_{Y}\left(\overrightarrow{P^{\prime}}\right)\left(t_{f}-t\right)\right) \exp \left(-E_{X}(\vec{P}) t\right) \\
\left(0 \ll t \ll t_{f}, X, Y=\pi, K\right)
\end{array}
$$

and construct ratios by 3(or 2)point function
the ratios (combination of 2point and 3point functions)
JLQCD, arXiv:1705.00884v1 [hep-lat]

$$
\begin{array}{r}
d_{1}=\frac{C_{4}^{\pi K}(\overrightarrow{0}, \overrightarrow{0}) C_{4}^{K \pi}(\overrightarrow{0}, \overrightarrow{0})}{C_{4}^{K K}(\overrightarrow{0}, \overrightarrow{0}) C_{4}^{\pi \pi}(\overrightarrow{0}, \overrightarrow{0})} \rightarrow \frac{\left(m_{K}+m_{\pi}\right)^{2}}{4 m_{K} m_{\pi}}\left(f_{0}\left(q_{m i n}^{2}\right)\right)^{2} \\
\left(0 \ll t \ll t_{f}, q_{m i n}^{2}=-\left(m_{K}-m_{\pi}\right)^{2}\right)
\end{array}
$$

$$
\begin{array}{r}
d_{2}=\frac{C_{4}^{\pi K}(\overrightarrow{0}, \vec{p}) C^{\pi}(\overrightarrow{0})}{C_{4}^{\pi K}(\overrightarrow{0}, \overrightarrow{0}) C^{\pi}(\vec{p})} \rightarrow\left(\frac{E_{\pi}(\vec{p})+m_{K}}{m_{\pi}+m_{K}}+\frac{E_{\pi}(\vec{p})-m_{K}}{m_{\pi}+m_{K}} \xi\left(q^{2}\right)\right) \frac{f_{+}\left(q^{2}\right)}{f_{0}\left(q_{m i n}^{2}\right)} \\
\left(0 \ll t \ll t_{f}\right)
\end{array}
$$

$$
d_{3}=\frac{C_{i}^{\pi K}(\overrightarrow{0}, \vec{p}) C_{4}^{K K}(\overrightarrow{0}, \vec{p})}{C_{i}^{K K}(\overrightarrow{0}, \vec{p}) C_{4}^{\pi K}(\overrightarrow{0}, \vec{p})} \rightarrow\left(\frac{E_{K}(\vec{p})+m_{K}}{p_{i}} \frac{p_{i}-q_{i} \xi\left(q^{2}\right)}{E_{\pi}(p)+m_{K}+\left(m_{K}-E_{\pi}(p)\right) \xi\left(q^{2}\right)}\right)
$$

$$
\left(0 \ll t \ll t_{f}, i=1-3\right)
$$

construct the form factors from the ratios

$d_{1} \rightarrow f_{0}\left(q_{\text {min }}^{2}\right)$
$d_{3} \rightarrow \xi\left(q^{2}\right)=\frac{f_{-}\left(q^{2}\right)}{f_{+}\left(q^{2}\right)}$

$$
\rightarrow d_{2} \rightarrow f_{+}\left(q^{2}\right) \rightarrow f_{0}\left(q^{2}\right)=f_{+}\left(q^{2}\right)\left(1+\frac{-q^{2}}{\left(m_{K}^{2}-m_{\pi}^{2}\right)} \xi\left(q^{2}\right)\right)
$$

Calculation 3-point function

- connected 3-point function is $C_{\mu}^{X Y}\left(\overrightarrow{P^{\prime}}, \vec{P}\right)=Z_{V}\langle 0| O_{Y}\left(t_{f}, \overrightarrow{P^{\prime}}\right) V_{\mu}(t, \vec{q}) O_{X}^{\dagger}\left(t_{i}, \vec{P}\right)|0\rangle$ consist of 3 quark propagators

1 random wall source

$$
\vec{p}_{i}=\overrightarrow{0}
$$

- 2 sequential source

$$
\vec{p}_{f}=\overrightarrow{0}
$$

- 3 random wall source

$$
\vec{p}_{i} \neq \overrightarrow{0}
$$

$$
V_{4}\left(t, q=\overrightarrow{p_{f}}-\overrightarrow{p_{i}}\right)
$$

random wall source(A,B : color\&spinor index)

$$
\begin{aligned}
\eta_{B}\left(\vec{y}, t_{i}\right) & =\left\{\frac{1+i}{\sqrt{2}}, \frac{1-i}{\sqrt{2}}, \frac{-1+i}{\sqrt{2}}, \frac{-1-i}{\sqrt{2}}\right\} \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{j=0}^{N} \eta_{A}^{j}\left(\vec{x}, t_{i}\right) \eta_{B}^{\dagger j}\left(\vec{y}, t_{i}\right)=\delta(\vec{x}-\vec{y}) \delta_{A B} \\
& \in \mathbb{Z}(2) \otimes \mathbb{Z}(2)
\end{aligned}
$$

calculation cost is reduced by random wall source RBC\&UKQCD:JHEP (0807 (2008) 1 12)
disconnected term is vanished by charge symmetry

Simulation details

All the results are preliminary

PACS10 configuration (HPCI System Research project)
arXiv:1807.06237v1 [hep-lat]
$L^{3} \times T=128^{3} \times 128 m_{\pi} L \approx 7.5 \quad\left(\kappa_{u d}, \kappa_{s}\right)=(0.126117,0.124902)$
$\beta=1.82, n_{\text {stout }}=6, \rho=0.1, c_{s w}=1.11 \quad a^{-1}=2.333(\mathrm{GeV}) \rightarrow a=0.084(\mathrm{fm})$
$N_{f}=2+1 \quad$ Iwasaki gauge + stout smeared link Wilson clover action

measurement parameter

20 configurations (every 10 traj.)
8 time slices $\times 4$ directions (x, y, z, t)
$\times 1$ random source $=32$ meas. per config. (anti) periodic boundary condition for temporal direction
bin size: 10 traj. $\quad t_{f}-t_{i}=36$
resources : Oakforest-PACS (JCAHPC)

$$
\begin{gathered}
\text { directions of } \\
\text { source momenta }
\end{gathered} \vec{n} \quad \vec{p}=\frac{2 \pi}{L} \vec{n}
$$

$\left\|\vec{n}^{2}\right\|=n$	\# dir. of \vec{n}	perm. of $\vec{n}=$
0	1	$(0,0,0)$
1	6	$(1,0,0)$
2	12	$(1,1,0)$
3	8	$(1,1,1)$
4	6	$(2,0,0)$
5	9	$(2,1,0)$
6	9	$(2,1,1)$
sink momentum : 0		

sink momentum : 0

Note that our calculation without twisted boundary condition in spatial directions

Preliminary result : momentum transfer dependance of semileptonic decay form factors

constant fit
from all the ratios
in $t=15-21$
there is target
momentum ($q=0$) between mom. of $n=4$ and $n=5$
$n=0 \rightarrow q_{m i n}^{2}=-\left(m_{K}-m_{\pi}\right)^{2}$ $\approx-0.132\left(\mathrm{GeV}^{2}\right)$
square symbols: $f_{+}\left(q^{2}\right)$ circle symbols: $f 0\left(q^{2}\right)$
the form factors of Kaon with mom. are noisier than Pion's with mom. and too far to extrapolate to the target the data of Kaon with mom. is NOT included in the next analysis

preliminary result : interpolation to zero momentum transfer (monopole fit)

blue dashed line : $\quad f_{+}\left(q^{2}\right)=\frac{f_{+}(0)}{1+q^{2} / M_{\text {monoV }}^{2}}$
red dashed line : $\quad f_{0}\left(q^{2}\right)=\frac{f_{0}(0)}{1+q^{2} / M_{\text {monos }}^{2}}$

2 free parameters :

$$
f_{+, 0}(0), M_{\text {monoV }, S}^{2}
$$

the fit with the momenta from $n=1$ to $n=6$
note that the result of the fit with $n=0(q m i n)$ is the almost same

near $\mathrm{q}=0$ region, between $n=4$ and $n=5$ mom.

$$
f_{+}(0)=0.9548(36) \quad f_{0}(0)=0.9554(37)
$$

preliminary result : interpolation to zero momentum transfer (NLO SU(3) ChPT fit)

$$
\begin{array}{cc}
f_{+}\left(q^{2}\right)=F_{+}(s)\left(1+C_{+}(s) x+\frac{m_{K}^{2}}{\left(4 \pi f_{0}\right)^{2}}\left(-\frac{3}{4} x \log x-x T_{1}^{+}(s)-T_{2}^{+}(s)\right)\right) & \text { ETMC, } \\
f_{0}\left(q^{2}\right)=F_{0}(s)\left(1+C_{0}(s) x+\frac{m_{K}^{2}}{\left(4 \pi f_{0}\right)^{2}}\left(-\frac{3}{4} x \log x+x T_{1}^{0}(s)-T_{2}^{0}(s)\right)\right) & \text { arXiv:1012.3573 [hep-lat] } \\
s=-\frac{q^{2}}{m_{K}^{2}}, x=\frac{m_{\pi}^{2}}{m_{K}^{2}} & 3 \text { free parameters : } \\
T_{1}^{+}(s)=[(1-s) \log (1-s)+s(1-s / 2)] 3(1+s) / 4 s^{2} & F_{+, 0}(s)=F_{+, 0} \\
T_{2}^{+}(s)=[(1-s) \log (1-s)+s(1-s / 2)](1-s)^{2} / 4 s^{2} & C_{+, 0}(s)=C_{+, 0}^{0}+C_{+, 0}^{1} s \\
T_{1}^{0}(s)=[\log (1-s)+s(1+s / 2)]\left(9+7 s^{2}\right) / 4 s^{2} &
\end{array}
$$

the decay constant : $f_{0}=0.10508(\mathrm{GeV})$

* combine $f=0.12925(\mathrm{GeV})\left(m_{u}, m_{d} \rightarrow 0\right)$ and $\frac{f}{f_{0}}=1.229$
the ratio from arXiv:0804.0473 [hep-lat]
the fit with the momenta from $n=1$ to $n=6$

preliminary result : interpolation to zero momentum transfer (NLO ChPT fit)

blue dashed line : $f_{+}\left(q^{2}\right)=F_{+}\left(1+\left(C_{+}^{0}+C_{+}^{1} s\right) x+\frac{m_{K}^{2}}{\left(4 \pi f_{0}\right)^{2}}\left(-\frac{3}{4} x \log x-x T_{1}^{+}(s)-T_{2}^{+}(s)\right)\right)$ red dashed line : $f_{0}\left(q^{2}\right)=F_{0}\left(1+\left(C_{0}^{0}+C_{0}^{1} s\right) x+\frac{m_{K}^{2}}{\left(4 \pi f_{0}\right)^{2}}\left(-\frac{3}{4} x \log x+x T_{1}^{0}(s)-T_{2}^{0}(s)\right)\right)$

the fit with the momenta from $\mathrm{n}=1$ to $\mathrm{n}=6$
note that the result of the fit with $\mathrm{n}=0$ (qmin) is also the almost same

$$
f_{+}(0)=0.9553(33) \quad f_{0}(0)=0.9556(34)
$$

preliminary result : CKM matrix element

In the experimental result $\quad\left|V_{u s}\right| f_{+}\left(q^{2}=0\right)=0.2165(4)$
our results of CKM (average the results from $\mathrm{f}+$ and f 0)

comparison with our preliminary result(red filled symbols) and other calculation

$$
\begin{aligned}
& \left|V_{u s}\right|^{\text {mono }}=0.22664(61)(8)(41) \\
& \left|V_{u s}\right|^{\text {chpt }}=0.22658(56)(8)(41) \\
& \text { 1st error : statistical } \\
& \text { 2nd error : difference of central } \\
& \text { value between f+ and f0 } \\
& \text { 3rd error : from experiment }
\end{aligned}
$$

our preliminary results are consist with assuming unitarity

preliminary result : slope of form factor

slope of form factor $\quad \lambda_{(t, 0)}^{\prime}=\left.\frac{m_{\pi}^{2}+\text { tphs }}{f_{(+, 0)}(0)} \frac{f_{(+, 0)}(t)}{d t}\right|_{t=0}$ can be used for the consistency check with experiment

$$
\lambda_{(+)}^{\prime}=2.58(7) \times 10^{-2} \quad \lambda_{(0)}^{\prime}=1.36(7) \times 10^{-2}
$$

our result
monopole fit

$$
\lambda_{(+)}^{\prime}=2.55(6) \times 10^{-2} \quad \lambda_{(0)}^{\prime}=1.44(5) \times 10^{-2}
$$

ChPT fit

$$
\lambda_{(+)}^{\prime}=2.44(6) \times 10^{-2} \quad \lambda_{(0)}^{\prime}=1.36(7) \times 10^{-2}
$$

our results are consistent with experiment

Summary

We calculated semileptonic form factor in $\mathrm{N}_{\mathrm{f}}=2+1$ Lattice QCD

- calculation on (10 fm$)^{3}$
- physical light quark and strange quark mass
- monopole and ChPT to interpolate to zero momentum transfer our preliminary result of semileptonic form factors

$$
\begin{aligned}
& f_{+}(0)=0.9548(36), f_{0}(0)=0.9554(37) \quad: \text { monopole fit } \\
& f_{+}(0)=0.9553(33), f_{0}(0)=0.9556(34) \quad \text { : ChPT fit }
\end{aligned}
$$

our preliminary results are consistent with assuming unitarity and higher than PDG

$$
\left|V_{u s}\right|^{\text {mono }}=0.22664(61)(8)(41)\left|V_{u s}\right|^{\text {chpt }}=0.22658(56)(8)(41)
$$

Next step

- excited state contribution
- estimate error from finite lattice spacing
- model independent analysis (z expansion)

back up

Extraction of (Pion) form factor

light pion mass + periodic boundary condition in temporal direction \rightarrow current time dependence appears in R we should consider wrapping around effect form factor + wrapping around effect

Calculation 3-point function

- connected 3-point function is $C_{\pi V \pi}=Z_{V}\langle 0| O_{\pi}\left(t_{f}, \vec{p}_{f}\right) V_{4}(t, \vec{q}) O_{\pi}^{\ddagger}\left(t_{i}=0, \vec{p}_{i}\right)|0\rangle$ consist of 3 quark propagators

the data of all quark propagator $(1,2,3)$ calculation with temporal periodic b.c.

$$
+
$$

\#1 (red) quark propagator calculation with temporal anti periodic b.c.
suppress wrapping around effect in temporal direction

