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The Sign Problem

Within the general class of problems

with complex weights, there is a - Motivated by Lee-Yang theory and
distinguished class: those with a the ip2 field theory
PT symmetry:
-+ Many favorite sign problem models
% ()() . (_ )()* are PT-symmetric, e.g., the
charged Bose gas and QCD at
Complex weights finite density. In those cases, the

symmetry is CK where C is charge
conjugation and K is complex
conjugation.

Unbroken PT symmetry implies
that transfer matrix eigenvalues are
either real or form a complex
conjugate pair. Z is real but not

Bender & Boettcher, PRL 1998 necessarily positive.
Meisinger & mco 1208.5077




An algorithm for

Any PT symmetric theory can
be transformed into a form
where all weights are real.

Key steps are rewriting the
kinetic and potential terms as
Fourier transforms. This can be
understood as a partial duality
transform.

Local, easy to implement,
works in any dimension

For models satisfying the
positive weight condition,
the sign problem is
completely solved.
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Two Components and the Bose Gas

The Bose gas at finite density has the same anti-linear symmetry as
QCD: CK where C is charge conjugation and K is complex conjugation.
The key Is treatment of the temporal derivative term:
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V(. ) = myp?12 +m7 *12 — igdpy
V(p,0 - n) = m(/%gb2/2 + (0w — gp)*/12m.
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—xactly solvable quadratic model (ICQ)

- Exactly solvable in any

dimension

- PT symmetry implies

masses are either both
real OR form a conjugate
pair

- Spectral positivity

broken

-+ Data points: 1d

simulations, error bars
negligible

- Lines: exact continuum

solution



Imaginary Yukawa coupling (ICY)

V(. ) = myp* /2 + m; x*12 — igyep?

V(¢, m,) = m§¢2/2 + (07— gqb2)2/2mf
No sign of any complex

wa)qb(y» 003, m2 — 0.05, ¢ — 001 mass pairs in d=1,2 or 3.
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1_005 m2 = 0.05, g =0.05 |
0.34 - 4 m2=0.09, m2=0.01, g=0.09 - This model goes

smoothly into a phi
fourth model in a scaled

02| limit where g and m chi
- go to infinity.
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Double Well with imaginary coupling (ICDW)

local & complex form:

§=, % (0,)° +% (0)" + 2% = V2 + m 212 — gy

local & real form:
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nonlocal real form:
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Configuration snapshots of ICDW model

- Many different
striping lbehaviors

- Rotational
symmetry
breaking effects
obvious at smaller

9

- Larger g, behavior
IS similar to that
seen in spinodal
decomposition

- These patterns
change very slowly
INn the course of
simulations, and
this is physical:
slow modes

m?=05,2=01&v =3



|ICDW & the Ring of Fire

Configurations Averaged Fourier transform of configurations

Pattern formation due to a tachyonic instability!
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Pattern formation

Configuration snapshots of ¢ in the three-dimensional ICDW model on a 643 lattice two values of g. The other
parameters are mX2 =0.5,A=0.1 and v = 3. The surfaces represent the domain walls between ¢ >0 and ¢ <0
regions. The color has no meaning and is meant only to guide the eye.



Connections

Nuclear pasta

- Predicted in inner crust of neutron stars
- Due to competition between nuclear and
Coulomb forces.

Ravenhall et al., 1983; Hashimoto
et al. 1984: Horowitz et al. 2004

Other complex systems

Seul and Andelman, Science 1995

Common Feature: slow modes

(a) Gnocchi

(f) Antispaghetti (g) An;z;gnocchi

Caplan and Horowitz 1606.03646

Ortix et al., PRL .100.246402 (2008)



The case of i3 transitions

Models in the ip® universality Im(h)

class are problematic. The
original case of the Ising
model in an imaginary field is
instructive: the partition 250 iy
function must vary in sign as Re(h)
Lee-Yang zeros are crossed.

Z<0

This behavior has a natural
explanation using PT

symmetry: zeros arise when N N N
the largest eigenvalues of L= Z (/lp +4, ) + 2 Ay
the transfer matrix form a p r
conjugate pair. : N

jugate Z A+ A" = ‘/10‘ 2 cos(Ne)

See also: de Forcrand &
Rindlisbacher, 1711.00042



Spin models: Z(3)

Generic spin model _ [— 1 : ] 5 2 2
with complex spins Z = Tr,exp (2,Gy, 2, + hg2g, + 1,7, G~J/ (q + m )
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* This factor becomes negative when ¢x becomes sufficiently negative. This regions can be
eliminated by a mild deformation of the model.

Models that have ip3 transitions somewhere in their parameter space will typically have negative
contributions to Z which dominate when Z<0.

For Z(3), the ip2 transition is obtained when hr becomes very negative.



Conclusions

- There is a simple, local algorithm that allows for simulation of a large class of
scalar models with complex actions. This provides benchmark results for all
proposed algorithms. The presence of an | phi cubed transition embedded
within a particular model’s parameter space is an obstacle to a successful
resolution of a sign problem.

- Simulation indicates that pattern formation is an expected feature
associated with models with sign problems and a phase transition. It can be
driven by a tachyonic instability of the global translation-invariant phase. This
IS closely related to spinodal decomposition.

- Simulation of models with features in common with QCD at finite density
indicate pattern formation around critical region.

- Pattern formation gives a new perspective on computational complexity but
represents an opportunity to connect lattice field theory with other areas of
physics.



