Simulation of Scalar Field Theories with Complex Actions

Michael C. Ogilvie and Leandro Medina

Department of Physics
Washington University, St. Louis MO USA

Outline

- PT Symmetry and a new algorithm
- Models: Bose gas, positivity violations and pattern formation
- The special problem of $i \phi^{3}$

Acknowledgements

- Leandro Medina: this work arxiv:1712.02842
- Kamal Pangeni and Hiro Nishimura: PNJL and related models, strongcoupling lattice models at finite density: 1401.7982, 1411.4959, 1512.09131, 1612.09575
- Stella Schindler and Moses Schindler: current work on 1st-order transitions
- Carl Bender and Zohar Nussinov: advice and discussions

The Sign Problem

Within the general class of problems with complex weights, there is a distinguished class: those with a PT symmetry:

Bender \& Boettcher, PRL 1998
Meisinger \& mco 1208.5077

- Motivated by Lee-Yang theory and the i ϕ^{3} field theory
- Many favorite sign problem models are PT-symmetric, e.g., the charged Bose gas and QCD at finite density. In those cases, the symmetry is CK where C is charge conjugation and K is complex conjugation.
- Unbroken PT symmetry implies that transfer matrix eigenvalues are either real or form a complex conjugate pair. Z is real but not necessarily positive.

An algorithm for PT-symmetric models

- Any PT symmetric theory can be transformed into a form where all weights are real.
- Key steps are rewriting the kinetic and potential terms as Fourier transforms. This can be understood as a partial duality transform.
- Local, easy to implement, works in any dimension

For models satisfying the positive weight condition, the sign problem is completely solved.

$$
\begin{array}{r}
S(\chi)=\sum_{x}\left[\frac{1}{2}\left(\partial_{\mu} \chi(x)\right)^{2}+V(\chi(x))-i h(x) \chi(x)\right] \\
\text { PT Symmetry: } \quad V(\chi)^{*}=V(-\chi)
\end{array}
$$

$$
\exp \left[\frac{1}{2}\left(\partial \chi_{x}\right)^{2}\right]=\int d \pi_{\mu}(x) \exp \left[\frac{1}{2} \pi_{\mu}(x)^{2}+i \pi_{\mu}(x) \partial_{\mu} \chi_{x}\right]
$$

$$
w(\chi) \equiv \exp [-V(\chi)]
$$

$$
w(\chi)^{*}=w(-\chi) \Longrightarrow \tilde{w}(\tilde{\chi}) \equiv F[w] \in R
$$

$$
\tilde{w}>0 \Longrightarrow \tilde{V} \equiv-\log [\tilde{w}] \in R
$$

$$
Z=\int \prod_{x} d \pi_{\mu}(x) \exp \left\{-\sum_{x}\left[\frac{1}{2} \pi_{\mu}^{2}(x)+\tilde{V}(\partial \cdot \pi(x)-h(x))\right]\right\}
$$

Two Components and the Bose Gas

The Bose gas at finite density has the same anti-linear symmetry as QCD: CK where C is charge conjugation and K is complex conjugation. The key is treatment of the temporal derivative term:

$$
\Psi=\frac{1}{\sqrt{2}}(\phi+i \chi)
$$

$$
\text { PT Symmetry: } \quad \mathscr{L}(\phi, \chi)^{*}=\mathscr{L}(\phi,-\chi)
$$

Key: Fourier transform time derivative and mass term together

$$
K_{0}=\left(e^{\mu} \Psi^{* *}-\Psi^{*}\right)\left(e^{-\mu} \Psi^{\prime}-\Psi\right)+\frac{1}{2} m^{2}\left(\Psi^{\prime *} \Psi^{\prime}+\Psi^{*} \Psi\right)
$$

After Fourier transformation of x :

$$
\begin{aligned}
& \tilde{S}=\frac{1}{2} \cosh \mu\left(\partial_{4} \phi\right)^{2}+\frac{1}{2}(\nabla \phi)^{2}+\frac{1}{2} m^{2} \phi^{2}+\frac{1}{2} \pi_{\mu}^{2}+\tilde{V}\left(\phi, \pi_{\mu}\right) \\
& \tilde{V}\left(\phi, \pi_{\mu}\right)=\frac{1}{2 m^{2}}\left(\cosh \mu\left(\partial_{4} \pi_{4}\right)+\nabla \cdot \vec{\pi}-\sinh \mu\left[\phi\left(x+\hat{e}_{4}\right)-\phi\left(x-\hat{e}_{4}\right)\right]\right)^{2}
\end{aligned}
$$

Exactly solvable quadratic model (ICQ)

$$
\begin{aligned}
& V(\phi, \chi)=m_{\phi}^{2} \phi^{2} / 2+m_{\chi}^{2} \chi^{2} / 2-i g \phi \chi \\
& \tilde{V}(\phi, \partial \cdot \pi)=m_{\phi}^{2} \phi^{2} / 2+(\partial \cdot \pi-g \phi)^{2} / 2 m_{\chi}^{2}
\end{aligned}
$$

- Exactly solvable in any dimension
- PT symmetry implies masses are either both real OR form a conjugate pair
- Spectral positivity always broken
- Data points: 1d simulations, error bars negligible
- Lines: exact continuum solution

Imaginary Yukawa coupling (ICY)

$$
\begin{aligned}
& V(\phi, \chi)=m_{\phi}^{2} \phi^{2} / 2+m_{\chi}^{2} \chi^{2} / 2-i g \chi \phi^{2} \\
& \tilde{V}\left(\phi, \pi_{\mu}\right)=m_{\phi}^{2} \phi^{2} / 2+\left(\partial \cdot \pi-g \phi^{2}\right)^{2} / 2 m_{\chi}^{2} \\
& \text { - No sign of any complex } \\
& \text { mass pairs in } d=1,2 \text { or } 3 \text {. } \\
& \text { - This model goes } \\
& \text { smoothly into a phi } \\
& \text { fourth model in a scaled } \\
& \text { limit where } \mathrm{g} \text { and } \mathrm{m} \text { chi } \\
& \text { go to infinity. }
\end{aligned}
$$

Double Well with imaginary coupling (ICDW)

local \& complex form:

$$
S=\sum_{x}\left[\frac{1}{2}\left(\partial \phi_{x}\right)^{2}+\frac{1}{2}\left(\partial \chi_{x}\right)^{2}+\lambda\left(\phi^{2}-v^{2}\right)^{2}+m_{\chi}^{2} \chi^{2} / 2-i g \chi \phi\right]
$$

local \& real form:

$$
\tilde{S}=\sum_{x}\left[\frac{1}{2}\left(\partial \phi_{x}\right)^{2}+\frac{1}{2} \pi_{x \mu}^{2}+\frac{1}{2 m^{2}}(\partial \cdot \pi-g \phi)^{2}+\lambda\left(\phi^{2}-v^{2}\right)^{2}\right]
$$

nonlocal real form:

$$
S_{e f f}=\sum_{x}\left[\frac{1}{2}\left(\partial_{\mu} \phi(x)\right)^{2}+U(\phi)\right]+\frac{g^{2}}{2} \sum_{x, y} \phi(x) \Delta(x-y) \phi(x)
$$

Configuration snapshots of ICDW model

$g=1.2$
$g=1.0$

$g=1.3$
$g=1.1$

$g=1.5$
$m_{\chi}^{2}=0.5, \lambda=0.1 \& v=3$

- Many different striping behaviors
- Rotational symmetry breaking effects obvious at smaller g
- Larger g, behavior is similar to that seen in spinodal decomposition
- These patterns change very slowly in the course of simulations, and this is physical: slow modes

ICDW \& the Ring of Fire

Configurations

Averaged Fourier transform of configurations

Pattern formation due to a tachyonic instability!

3d Pattern formation

Configuration snapshots of ϕ in the three-dimensional ICDW model on a 64^{3} lattice two values of g. The other parameters are $m_{\chi}{ }^{2}=0.5, \lambda=0.1$ and $v=3$. The surfaces represent the domain walls between $\phi>0$ and $\phi<0$ regions. The color has no meaning and is meant only to guide the eye.

Connections

Nuclear pasta

- Predicted in inner crust of neutron stars
- Due to competition between nuclear and Coulomb forces.

Ravenhall et al., 1983; Hashimoto et al. 1984; Horowitz et al. 2004

Other complex systems

Seul and Andelman, Science 1995

Common Feature: slow modes

The case of i ϕ^{3} transitions

- Models in the $i \phi^{3}$ universality class are problematic. The original case of the Ising model in an imaginary field is instructive: the partition function must vary in sign as Lee-Yang zeros are crossed.
- This behavior has a natural explanation using PT symmetry: zeros arise when the largest eigenvalues of the transfer matrix form a conjugate pair.

$$
\begin{gathered}
\underbrace{}_{Z<0} \underbrace{\operatorname{lm}(\mathrm{~h})}_{\text {Re(h) }} \\
Z=\sum_{p}\left(\lambda_{p}^{N}+\lambda_{p}^{* N}\right)+\sum_{r} \lambda_{r}^{N} \\
Z \approx \lambda_{0}^{N}+\lambda_{0}^{* N}=\left|\lambda_{0}\right|^{N} 2 \cos \left(N \phi_{0}\right)
\end{gathered}
$$

- See also: de Forcrand \& Rindlisbacher, 1711.00042

Spin models: Z(3)

Generic spin model with complex spins

$$
Z=\operatorname{Tr}_{z} \exp \left[\bar{z}_{x} G_{x y}^{-1} z_{y}+h_{R x} z_{R x}+i h_{I x} z_{I x}\right] \quad \tilde{G} \simeq J /\left(q^{2}+m^{2}\right)
$$

Real representation $\quad \tilde{S}=\frac{1}{2 J}\left(\partial \phi_{x}\right)^{2}+\frac{J}{2} \pi_{x \mu}^{2}+\frac{m^{2}}{2 J} \phi_{x}^{2}+\frac{J}{2 m^{2}}\left(\partial \cdot \pi_{x}\right)^{2}+\sum_{x} \tilde{U}\left(\phi_{x}, \partial \cdot \pi_{x}\right)$

$$
\exp \left[-\tilde{U}\left(\phi_{x} \tilde{\chi}_{x}\right)\right]=\operatorname{Tr}_{z_{x}} \exp \left[\frac{J}{2 m^{2}} z_{I x}^{2}+\left(h_{R x}+\phi_{x}\right) z_{R x}+i\left(h_{l x}-\frac{J}{m^{2}} \tilde{\chi}\right) z_{I x}\right]
$$

$Z(3): \quad \exp \left[-\tilde{U}\left(\phi_{x}, \tilde{\chi}_{x}\right)\right]=1+\exp \left[\frac{3 J}{4 m^{2}}-\frac{3}{2}\left(h_{R x}+\phi_{x}\right)\right] 2 \cos \left[\frac{\sqrt{3}}{2}\left(h_{l x}-\frac{J}{m^{2}} \tilde{\chi}\right)\right]$

- This factor becomes negative when ϕ_{x} becomes sufficiently negative. This regions can be eliminated by a mild deformation of the model.
- Models that have $i \phi^{3}$ transitions somewhere in their parameter space will typically have negative contributions to Z which dominate when $Z<0$.
- For $Z(3)$, the $i \phi^{3}$ transition is obtained when h_{R} becomes very negative.

Conclusions

- There is a simple, local algorithm that allows for simulation of a large class of scalar models with complex actions. This provides benchmark results for all proposed algorithms. The presence of an i phi cubed transition embedded within a particular model's parameter space is an obstacle to a successful resolution of a sign problem.
- Simulation indicates that pattern formation is an expected feature associated with models with sign problems and a phase transition. It can be driven by a tachyonic instability of the global translation-invariant phase. This is closely related to spinodal decomposition.
- Simulation of models with features in common with QCD at finite density indicate pattern formation around critical region.
- Pattern formation gives a new perspective on computational complexity but represents an opportunity to connect lattice field theory with other areas of physics.

