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Outline
• PT Symmetry and a new algorithm 

• Models: Bose gas, positivity violations and pattern formation 

• The special problem of iφ3



The Sign Problem

• Motivated by Lee-Yang theory and 
the iφ3 field theory 

• Many favorite sign problem models 
are PT-symmetric, e.g., the 
charged Bose gas and QCD at 
finite density. In those cases, the 
symmetry is CK where C is charge 
conjugation and K is complex 
conjugation. 

• Unbroken PT symmetry implies 
that transfer matrix eigenvalues are 
either real or form a complex 
conjugate pair. Z is real but not 
necessarily positive.

Within the general class of problems 
with complex weights, there is a 
distinguished class: those with a 
PT symmetry:

Complex weights

Positive 
weights

PT

Bender & Boettcher, PRL 1998

Meisinger & mco 1208.5077 

ℒ (χ) = ℒ (−χ)*



An algorithm for PT-symmetric models

S(χ) = ∑
x

[ 1
2 (∂μ χ(x))2 + V(χ(x)) − ih(x)χ(x)]

Z = ∫ ∏
x

dπμ(x)exp {−∑
x

[ 1
2 π2

μ(x) + Ṽ(∂ ⋅ π(x) − h(x))]}

• Any PT symmetric theory can 
be transformed into a form 
where all weights are real.  

• Key steps are rewriting the 
kinetic and potential terms as 
Fourier transforms. This can be 
understood as a partial duality 
transform. 

• Local, easy to implement, 
works in any dimension 

• For models satisfying the 
positive weight condition, 
the sign problem is 
completely solved.

w(χ)* = w(−χ) ⟹ w̃( χ̃) ≡ F[w] ∈ R

w(χ) ≡ exp[−V(χ)]

w̃ > 0 ⟹ Ṽ ≡ − log[w̃] ∈ R

exp [ 1
2 (∂χx)2] = ∫ dπμ(x)exp [ 1

2
πμ(x)2 + iπμ(x)∂μ χx]

V (χ)* = V (−χ)PT Symmetry:



Two Components and the Bose Gas

K0 = (eμΨ′�* − Ψ*) (e−μΨ′�− Ψ) +
1
2

m2 (Ψ′�*Ψ′� + Ψ*Ψ)

S̃ = 1
2 cosh μ (∂4ϕ)2+ 1

2 (∇ϕ)2+ 1
2 m2ϕ2+ 1

2 π2
μ + Ṽ(ϕ, πμ)

Ṽ(ϕ, πμ) =
1

2m2 (cosh μ (∂4π4) + ∇ ⋅ ⃗π − sinh μ [ϕ(x + ̂e4) − ϕ(x − ̂e4)])
2

ℒ (ϕ, χ)* = ℒ (ϕ, − χ)Ψ =
1

2
(ϕ + iχ)

The Bose gas at finite density has the same anti-linear symmetry as 
QCD: CK where C is charge conjugation and K is complex conjugation. 
The key is treatment of the temporal derivative term:

After Fourier transformation of χ:

PT Symmetry:

Key: Fourier transform 
time derivative and 
mass term together



Exactly solvable quadratic model (ICQ)

V(ϕ, χ) = m2
ϕϕ2/2 + m2

χ χ2/2 − igϕχ

Ṽ(ϕ, ∂ ⋅ π) = m2
ϕϕ2/2 + (∂ ⋅ π − gϕ)2/2m2

χ
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• Exactly solvable in any 
dimension 

• PT symmetry implies 
masses are either both 
real OR form a conjugate 
pair  

• Spectral positivity always 
broken  

• Data points: 1d 
simulations, error bars 
negligible 

• Lines: exact continuum 
solution



Imaginary Yukawa coupling (ICY)

V(ϕ, χ) = m2
ϕϕ2/2 + m2

χ χ2/2 − igχϕ2
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• No sign of any complex 
mass pairs in d=1,2 or 3. 

• This model goes 
smoothly into a phi 
fourth model in a scaled 
limit where g and m chi 
go to infinity.

Ṽ(ϕ, πμ) = m2
ϕϕ2/2 + (∂ ⋅ π − gϕ2)2/2m2

χ



Double Well with imaginary coupling (ICDW)

Seff = ∑
x

[ 1
2 (∂μϕ(x))2 + U(ϕ)] +

g2

2 ∑
x,y

ϕ(x)Δ(x − y)ϕ(x)

S̃ = ∑
x

[ 1
2 (∂ϕx)2 +

1
2

π2
xμ +

1
2m2 (∂ ⋅ π − gϕ)2 + λ(ϕ2 − v2)2]

S = ∑
x

[ 1
2 (∂ϕx)2 +

1
2 (∂χx)2 + λ(ϕ2 − v2)2 + m2

χ χ2/2 − igχϕ]
local & complex form:

nonlocal real form:

local & real form:



Configuration snapshots of ICDW model
g = 0.9 g = 1.0 g = 1.1

g = 1.2 g = 1.3 g = 1.5

• Many different 
striping behaviors 

• Rotational 
symmetry 
breaking effects 
obvious at smaller 
g 

• Larger g, behavior 
is similar to that 
seen in spinodal 
decomposition 

• These patterns 
change very slowly 
in the course of 
simulations, and 
this is physical: 
slow modes

m2
χ = 0.5, λ = 0.1 & v = 3



ICDW & the Ring of Fire
Configurations Averaged Fourier transform of configurations

Pattern formation due to a tachyonic instability!



3d Pattern formation

g=1.0 g=1.4

Configuration snapshots of φ in the three-dimensional ICDW model on a 643 lattice two values of g. The other 
parameters are mχ2 = 0.5, λ = 0.1 and v = 3. The surfaces represent the domain walls between φ > 0 and φ < 0 
regions. The color has no meaning and is meant only to guide the eye. 



Connections
(a) Gnocchi (b) Spaghetti (c) Waffles (d) Lasagna

(e) Defects (f) Antispaghetti (g) Antignocchi

Nuclear pasta 

- Predicted in inner crust of neutron stars 
- Due to competition between nuclear and 

Coulomb forces. 

Ravenhall et al., 1983; Hashimoto 
et al. 1984; Horowitz et al. 2004 Caplan and Horowitz 1606.03646

Other complex systems 

Seul and Andelman, Science 1995

Ortix et al., PRL .100.246402 (2008) 
Common Feature: slow modes



The case of iφ3 transitions

Im(h)

Re(h)
Z>0Z>0

Z<0

• Models in the iφ3 universality 
class are problematic. The 
original case of the Ising 
model in an imaginary field is 
instructive: the partition 
function must vary in sign as 
Lee-Yang zeros are crossed. 

• This behavior has a natural 
explanation using PT 
symmetry: zeros arise when 
the largest eigenvalues of 
the transfer matrix form a 
conjugate pair. 

• See also: de Forcrand & 
Rindlisbacher, 1711.00042

Z = ∑
p

(λN
p + λ*N

p ) + ∑
r

λN
r

Z ≈ λN
0 + λ*N

0 = λ0
N

2 cos(Nϕ0)



Spin models: Z(3)

Z = Trz exp [z̄xG−1
xy zy + hRxzRx + ihIxzIx]

S̃ =
1
2J (∂ϕx)2 +

J
2

π2
xμ +

m2

2J
ϕ2

x +
J

2m2
(∂ ⋅ πx)2 + ∑

x

Ũ (ϕx, ∂ ⋅ πx)

exp [−Ũ (ϕx, χ̃x)] = Trzx
exp [ J

2m2
z2
Ix + (hRx + ϕx) zRx + i (hIx −

J
m2

χ̃) zIx]
Z(3): exp [−Ũ (ϕx, χ̃x)] = 1 + exp [ 3J

4m2
−

3
2 (hRx + ϕx)] 2 cos [

3
2 (hIx −

J
m2

χ̃)]

Generic spin model 
with complex spins G̃ ≃ J/(q2 + m2)

• This factor becomes negative when φx becomes sufficiently negative. This regions can be 
eliminated by a mild deformation of the model. 

• Models that have iφ3 transitions somewhere in their parameter space will typically have negative 
contributions to Z which dominate when Z<0. 

• For Z(3), the iφ3 transition is obtained when hR becomes very negative.

Real representation



Conclusions

• There is a simple, local algorithm that allows for simulation of a large class of 
scalar models with complex actions. This provides benchmark results for all 
proposed algorithms.The presence of an i phi cubed transition embedded 
within a particular model’s parameter space is an obstacle to a successful 
resolution of a sign problem. 

• Simulation indicates that pattern formation is an expected feature 
associated with models with sign problems and a phase transition. It can be 
driven by a tachyonic instability of the global translation-invariant phase. This 
is closely related to spinodal decomposition.  

• Simulation of models with features in common with QCD at finite density 
indicate pattern formation around critical region.  

• Pattern formation gives a new perspective on computational complexity but 
represents an opportunity to connect lattice field theory with other areas of 
physics.


