

PROGRESS ON THE NATURE OF THE QCD THERMAL TRANSITION AS A FUNCTION OF QUARK FLAVORS AND MASSES

Francesca Cuteri, Owe Philipsen and Alessandro Sciarra partially based on Phys.Rev. D93 (2016) no.5, 054507

36th Annual International Symposium on Lattice Field Theory @ MSU

July 26th, 2018

Dependence of the order of the QCD thermal phase transition on the quark masses

• Broken global Z(3) for $m_{u,d}, m_s \to \infty$ \mathscr{S} Svetitsky, Yaffe (1982)

- Broken global Z(3) for $m_{u,d}, m_s \to \infty$ \mathscr{P} Svetitsky, Yaffe (1982)
- Restored global $SU_L(N_{\rm f}) \times SU_R(N_{\rm f})$ for $m_{u,d}, m_s \to 0 \quad \mathscr{P}$ Pisarski, Wilczek (1984)

Dependence of the order of the QCD thermal phase transition on the quark masses

- Broken global Z(3) for $m_{u,d}, m_s \to \infty$ \mathscr{P} Svetitsky, Yaffe (1982)
- Restored global $SU_L(N_f) \times SU_R(N_f)$ for $m_{u,d}, m_s \to 0 \quad \mathscr{P}$ Pisarski, Wilczek (1984)

• At the physical point, continuum extrapolated results

- Broken global Z(3) for $m_{u,d}, m_s \to \infty$ \mathscr{P} Svetitsky, Yaffe (1982)
- Restored global $SU_L(N_{\rm f}) \times SU_R(N_{\rm f})$ for $m_{u,d}, m_s \to 0 \quad \mathscr{P}$ Pisarski, Wilczek (1984)

- At the physical point, continuum extrapolated results
- $m_{u,d}$ very small. Transition affected by remnants of the chiral universality class?

- Broken global Z(3) for $m_{u,d}, m_s \to \infty$ \mathscr{P} Svetitsky, Yaffe (1982)
- Restored global $SU_L(N_{\rm f}) \times SU_R(N_{\rm f})$ for $m_{u,d}, m_s \to 0 \quad \mathscr{P}$ Pisarski, Wilczek (1984)

- At the physical point, continuum extrapolated results
- $m_{u,d}$ very small. Transition affected by remnants of the chiral universality class?
- Relevance of the strength of the $U(1)_A$ anomaly at $T_c \ \mathscr{P}$ Pisarski, Wilczek (1984)

- Broken global Z(3) for $m_{u,d}, m_s \to \infty$ \mathscr{P} Svetitsky, Yaffe (1982)
- Restored global $SU_L(N_f) \times SU_R(N_f)$ for $m_{u,d}, m_s \to 0 \quad \mathscr{P}$ Pisarski, Wilczek (1984)

- At the physical point, continuum extrapolated results
- $m_{u,d}$ very small. Transition affected by remnants of the chiral universality class?
- Relevance of the strength of the $U(1)_A$ anomaly at $T_c \ \mathscr{P}$ Pisarski, Wilczek (1984)
- Chiral 1^{st} order region wider for larger $N_{\rm f}$, until $N_{\rm f}=4$ \mathscr{P} de Forcrand, D'Elia (2017)

- Broken global Z(3) for $m_{u,d}, m_s \to \infty$ \mathscr{P} Svetitsky, Yaffe (1982)
- Restored global $SU_L(N_f) \times SU_R(N_f)$ for $m_{u,d}, m_s \to 0 \quad \mathscr{P}$ Pisarski, Wilczek (1984)

- At the physical point, continuum extrapolated results
- $m_{u,d}$ very small. Transition affected by remnants of the chiral universality class?
- Relevance of the strength of the $U(1)_A$ anomaly at $T_c \ {\mathscr P}$ Pisarski, Wilczek (1984)
- Chiral $1^{\rm st}$ order region wider for larger $N_{\rm f},$ until $N_{\rm f}=4~\mathscr{P}$ de Forcrand, D'Elia (2017)
- Strong cut-off and discretization dependence of chiral Z_2 boundary
 - Critical quark masses unreachably small for highly improved actions

- Columbia plot from the "unimproved viewpoint". Focus on $N_{\rm f}=2.$
 - ► Qualitative/Quantitative agreement between Wilson and staggered studies

- Columbia plot from the "unimproved viewpoint". Focus on $N_{\rm f}=2.$
 - ► Qualitative/Quantitative agreement between Wilson and staggered studies
 - \blacktriangleright Chiral $1^{\rm st}$ order region shrinks towards the continuum limit

- Columbia plot from the "unimproved viewpoint". Focus on $N_{\rm f}=2.$
 - ► Qualitative/Quantitative agreement between Wilson and staggered studies
 - \blacktriangleright Chiral $1^{\rm st}$ order region shrinks towards the continuum limit

- Columbia plot from the "unimproved viewpoint". Focus on $N_{\rm f}=2.$
 - ► Qualitative/Quantitative agreement between Wilson and staggered studies
 - \blacktriangleright Chiral $1^{\rm st}$ order region shrinks towards the continuum limit

- Columbia plot from the "unimproved viewpoint". Focus on $N_{\rm f}=2.$
 - ► Qualitative/Quantitative agreement between Wilson and staggered studies
 - \blacktriangleright Chiral $1^{\rm st}$ order region shrinks towards the continuum limit

At least two possible scenarios for the nature of $N_{\rm f}=2$ chiral transition

• "Direct approach" $\mu = 0$, $N_{\rm f} = 2$ and $m_{u,d} \rightarrow 0$ proved to be too expensive

At least two possible scenarios for the nature of $N_{\rm f}=2$ chiral transition

• "Direct approach" $\mu = 0$, $N_{\rm f} = 2$ and $m_{u,d} \rightarrow 0$ proved to be too expensive

- "Indirect approaches" exploit tricritical scaling laws for controlled extrapolations to the chiral limit
 - From imaginary chemical potential $\mu = i\mu_i$
 - At $\mu = 0$ and $(2+1)N_{\rm f}$

At least two possible scenarios for the nature of $N_{\rm f}=2$ chiral transition

• "Direct approach" $\mu = 0$, $N_{\rm f} = 2$ and $m_{u,d} \rightarrow 0$ proved to be too expensive

- "Indirect approaches" exploit tricritical scaling laws for controlled extrapolations to the chiral limit
 - From imaginary chemical potential $\mu = i\mu_i$
 - At $\mu = 0$ and $(2+1)N_{\rm f}$

Alternative $(m, N_{\rm f})$ Columbia plot

Yet another "indirect approach", promoting $N_{\rm f}$ to continuous real parameter $m_{Z_2}(N_{\rm f})$ according to the two considered scenarios

 $\bullet\,$ Partition function describing $N_{\rm f}$ flavors of degenerate mass m

$$Z_{N_{\mathbf{f}}}(m) = \int \mathcal{D}U \left[\det M(U,m)\right]^{N_{\mathbf{f}}} e^{-\mathcal{S}_{\mathbf{G}}}$$

- $\bullet\,$ Partition function describing $N_{\rm f}$ flavors of degenerate mass m
- Being of $1^{\rm st}$ order for $N_{\rm f} \ge 3$, a $2^{\rm nd}$ order transition for $N_{\rm f}=2$ requires a tricritical point $N_{\rm f}^{tric}$ in between

- $\bullet\,$ Partition function describing $N_{\rm f}$ flavors of degenerate mass m
- Being of $1^{\rm st}$ order for $N_{\rm f} \ge 3$, a $2^{\rm nd}$ order transition for $N_{\rm f} = 2$ requires a tricritical point $N_{\rm f}^{tric}$ in between
- ∞ many interpolations such that $\lim_{N_f \to 2,3} \mathcal{Z}(N_f = 2, \#) = \mathcal{Z}(N_f = 2, 3)$

$$Z_{N_{\mathbf{f}}=2,\#} = \int \mathcal{D}U \left[\det M(U,m)\right]^{2,\#} e^{-S_G}$$
$$Z_{N_{\mathbf{f}}=N_{\mathbf{f}}^{\mathbf{l}}+1} = \int \mathcal{D}U \left[\det M(U,m_1)\right]^{N_{\mathbf{f}}^{\mathbf{l}}} \left[\det M(U,m_2)\right] e^{-S_G}$$
$$Z_{N_{\mathbf{f}}^{\mathbf{l}}+1}(m,m_1) = Z_{N_{\mathbf{f}}}(m)$$

- $\bullet\,$ Partition function describing $N_{\rm f}$ flavors of degenerate mass m
- Being of $1^{\rm st}$ order for $N_{\rm f} \ge 3$, a $2^{\rm nd}$ order transition for $N_{\rm f}=2$ requires a tricritical point $N_{\rm f}^{tric}$ in between
- ∞ many interpolations such that $\lim_{N_{f}\to 2,3} \mathcal{Z}(N_{f}=2.\#) = \mathcal{Z}(N_{f}=2,3)$

$$Z_{N_{f}=2,\#} = \int \mathcal{D}U \left[\det M(U,m)\right]^{2,\#} e^{-S_{G}}$$
$$Z_{N_{f}=N_{f}^{1}+1} = \int \mathcal{D}U \left[\det M(U,m_{1})\right]^{N_{f}^{1}} \left[\det M(U,m_{2})\right] e^{-S_{G}}$$
$$Z_{N_{f}^{1}+1}(m,m_{1}) = Z_{N_{f}}(m)$$

• $Z_{N_{\rm f}=2.\#}$ partition function of a statistical system that represents one particular interpolation between QCD with integer $N_{\rm f}^{\rm l}$

- $\bullet\,$ Partition function describing $N_{\rm f}$ flavors of degenerate mass m
- Being of $1^{\rm st}$ order for $N_{\rm f} \ge 3$, a $2^{\rm nd}$ order transition for $N_{\rm f}=2$ requires a tricritical point $N_{\rm f}^{tric}$ in between
- ∞ many interpolations such that $\lim_{N_{f}\to 2,3} \mathcal{Z}(N_{f}=2.\#) = \mathcal{Z}(N_{f}=2,3)$

$$Z_{N_{f}=2,\#} = \int \mathcal{D}U \left[\det M(U,m)\right]^{2,\#} e^{-S_{G}}$$
$$Z_{N_{f}=N_{f}^{1}+1} = \int \mathcal{D}U \left[\det M(U,m_{1})\right]^{N_{f}^{1}} \left[\det M(U,m_{2})\right] e^{-S_{G}}$$
$$Z_{N_{f}^{1}+1}(m,m_{1}) = Z_{N_{f}}(m)$$

- $Z_{N_{\rm f}=2.\#}$ partition function of a statistical system that represents one particular interpolation between QCD with integer $N_{\rm f}^{\rm I}$
- Relative position of $N_{\rm f}^{tric}$ with respect to $N_{\rm f} = 2$ uniquely determined, its precise value has no meaning other than being located between two integer $N_{\rm f}^{\rm I}$

CONCLUSION FROM THE TRICRITICAL SCALING

• Coarse $N_{\tau} = 4$ lattices explored with rooted staggered fermion discretization

- Width of the scaling window in m same as found in the extrapolation from μ_i
- Cheapest extrapolation while changing N_{τ} ?

1 How could linearity help?

2 STRATEGY

Z_2 boundary linear in some $N_{\rm f}$ range?

- If it is reasonable to expect both linearity within some range in $N_{\rm f}$ and tricritical scaling closer to the chiral limit
 - ▶ make use of a linear extrapolation to m = 0 to get an upper bound for $N_{\rm f}^{\rm tricr}$, without the need to enter the tricritical scaling region
 - lower cost
 - no need for simulations at non integer number of flavors?!

Z_2 boundary linear in some $N_{\rm f}$ range?

- If it is reasonable to expect both linearity within some range in $N_{\rm f}$ and tricritical scaling closer to the chiral limit
 - ▶ make use of a linear extrapolation to m = 0 to get an upper bound for $N_{\rm f}^{\rm tricr}$, without the need to enter the tricritical scaling region
 - lower cost
 - no need for simulations at non integer number of flavors?!

- If $N_{\rm f}^{\rm lin} < 2,$ while one simulates at larger and larger N_τ towards the continuum limit
 - ► Transition in the N_f = 2 chiral limit keeps being a first order one
- \bullet As soon as $N_{\rm f}^{\rm lin} \geqslant 2$
 - No conclusion can be drawn

1 How could linearity help?

CODE & INVESTIGATED PARAMETER SPACE

- Simulations employ the OpenCL-based and publicly available
 ^O CL²QCD code Philipsen et al. (2014)
 - Unimproved rooted staggered fermion discretization (RHMC algorithm)
 - No. of flavors $N_f = 3, 4, 5 \text{ on } N_\tau = 4$ \longrightarrow
 - Chemical potential $\mu = 0$
 - Scan in mass
 - Finite size scaling
 - Scan in temperature \longrightarrow

 $N_f = 3.6, 4, 4.4$ on $N_\tau = 6$

$$m \in [0.0075, 0.0900]$$

$$N_{\sigma}/N_{\tau} = 2, 3, 4$$

 $(3-5) \beta$ values, then reweighting

• Sample the (approximate) order parameter $\mathcal{O} = \langle \bar{\psi}\psi \rangle$ and extract central moments of the distribution, which gets shifted and deformed while β is varied

$$B_n(\beta, m, N_{\sigma}) = \frac{\langle (\mathcal{O} - \langle \mathcal{O} \rangle)^n \rangle}{\langle (\mathcal{O} - \langle \mathcal{O} \rangle)^2 \rangle^{n/2}} .$$

 \blacktriangleright On phase boundaries, i.e. at β_c and in the thermodynamic limit

$$B_3(\beta_c, m) = 0; \qquad B_4(\beta_c, m) = \begin{cases} 1, & 1^{st} \text{ order} \\ 1.5, & 1^{st} \text{ order triple} \\ 1.604, & 2^{nd} \text{ order } Z_2 \\ 2, & \text{tricritical} \\ 3, & \text{crossover} \end{cases}$$

• Sample the (approximate) order parameter $\mathcal{O} = \langle \bar{\psi}\psi \rangle$ and extract central moments of the distribution, which gets shifted and deformed while β is varied \mathscr{P} F. C., O. Philipsen, A. Sciarra (2017)

 $B_3(\beta_c) = 0$ pinpoints $\beta_c \& B_4(\beta_c)$ reveals the order of the transition

CRITICAL PARAMETERS FOR Z_2 TRANSITIONS

Fitting $B_4(X, N_{\sigma})$ for sets at different spatial extent N_{σ} , as function of X

1 How could linearity help?

2 STRATEGY

 $N_{\rm f}=3,~N_{ au}=6$ from \mathscr{P} de Forcrand, Kim, Philipsen (2007)

CONCLUSIONS, SO FAR...

- Found $N_{\rm f}^{\rm lin} \ge 2$ for $N_{\tau} = 4, 6$.
- On the one hand
 - Nature of the chiral phase transition at $N_{\rm f}=2$ remains elusive to our linear extrapolation already on coarse lattices.
 - ► While being interesting on its own, linearity does not seem to help in resolving the N_f = 2 puzzle.
- On the other hand
 - If we think of the size of the shift in the boundary, the first order scenario would look more and more contrived with larger and larger N_τ values.
 - It would be interesting to obtain results for other fermion discretizations based on this method.

CONCLUSIONS, SO FAR...

Thank you for your attention!

- Found $N_{\rm f}^{\rm lin} \ge 2$ for $N_{\tau} = 4, 6$.
- On the one hand
 - Nature of the chiral phase transition at $N_{\rm f} = 2$ remains elusive to our linear extrapolation already on coarse lattices.
 - ► While being interesting on its own, linearity does not seem to help in resolving the N_f = 2 puzzle.
- On the other hand
 - If we think of the size of the shift in the boundary, the first order scenario would look more and more contrived with larger and larger N_τ values.
 - It would be interesting to obtain results for other fermion discretizations based on this method.