Status of $\bar{B} \rightarrow D^{*} \ell \bar{\nu}$ semileptonic decay and $\left|V_{c b}\right|$

Alejandro Vaquero

University of Utah

July $27^{\text {th }}, 2018$

On behalf of the Fermilab/MILC collaborations, with:

Carleton DeTar, University of Utah
Daping Du, University of Illinois
Aida El-Khadra, University of Illinois
Andreas Kronfeld, FNAL
John Laiho, University of Syracuse
Ruth Van de Water, FNAL

Outline

- Introduction
- The $\left|V_{c b}\right|$ CKM matrix element
- The weak decay $\bar{B} \rightarrow D^{*} \ell \bar{\nu}$
- Available data and simulations
- Status of the analysis
- Two-point function measurements
- Three-point function measurements
- Chiral-continuum limit
- z-Expansion and parametrizations
- Summary

Introduction: The $\left|V_{c b}\right|$ CKM matrix element

- Precision test of the standard model, looking into new phvsics
- CKM matrix

$$
\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

Determination	$\left\|V_{c b}\right\|\left(\cdot 10^{-3}\right)$
Exclusive	39.2 ± 0.7
Inclusive	42.5 ± 0.9

- Aparent 2σ tension between inclusive and exclusive determinations
- Forthcoming experiments (LHCb, Belle-II) aim to reduce the uncertainty in the determination of the CKM matrix elements

Introduction: The $\left|V_{c b}\right|$ CKM matrix element

$$
\frac{d \Gamma}{d w}\left(\bar{B} \rightarrow D^{*} \ell \bar{\nu}_{\ell}\right)=\frac{G_{F}^{2} m_{B}^{5}}{48 \pi^{2}}\left|V_{c b}\right|^{2}\left(w^{2}-1\right)^{\frac{1}{2}} P(w)\left|\eta_{e w} \mathcal{F}(w)\right|^{2}
$$

- Experiments measure the decay rate as a function of $w=v_{D^{*}} \cdot v_{B}$
- Reduction in the phase space $\left(w^{2}-1\right)^{\frac{1}{2}}$ limits experimental measurements
- Lattice calculations measure the form factors and reconstruct the whole \mathcal{F} function
- $\lim _{m_{Q} \rightarrow \infty} \mathcal{F}(w)=\xi(w)$, which is the Isgur-Wise function
- At large (but finite) mass $\mathcal{F}(w)$ receives corrections $O\left(\alpha_{s}, \frac{\Lambda_{Q C D}}{m_{Q}}\right)$
- A fit of the form factor to a theory-motivated function (parametrization) allows one to extract $V_{c b}$ from experimental data
- Caprini-Lellouch-Neubert (CLN)

$$
F(w)=F(1)-\rho^{2} z+c z^{2}, \quad \text { with } c=f(\rho), \quad z=\frac{\sqrt{w+1}-\sqrt{2}}{\sqrt{w+1}+\sqrt{2}}
$$

Introduction: The $\left|V_{c b}\right|$ CKM matrix element

- Relies on some strong assumptions
- Tightly constrains $F(w)$: only one independent parameter

From Phys. Lett. B769 (2017) 441-445 using Belle data at non-zero recoil and lattice data at zero recoil

- Our current understanding is that CLN might underestimate the slope at low recoil
- Current discrepancy might be an artifact
- An urgent lattice QCD calculation at $w \gtrsim 1$ is necessary to settle the issue

Introduction: The $\left|V_{c b}\right|$ CKM matrix element

Tensions in lepton universality

$$
R\left(D^{(*)}\right)=\frac{\mathcal{B}\left(B \rightarrow D^{(*)} \tau \nu_{\tau}\right)}{\mathcal{B}\left(B \rightarrow D^{(*)} \ell \nu_{\ell}\right)}
$$

- Current 4σ tension with the SM
- Only one calculation exists for $R\left(D^{*}\right)$

Introduction: The weak decay $\bar{B} \rightarrow D^{*} \ell \overline{\bar{\nu}}$

- Form factors

$$
\begin{gathered}
\frac{\left\langle D^{*}\left(p_{D^{*}}, \epsilon^{\nu}\right)\right| \mathcal{V}^{\mu}\left|\bar{B}\left(p_{B}\right)\right\rangle}{2 \sqrt{m_{B} m_{D^{*}}}}=\frac{1}{2} \epsilon^{\nu *} \varepsilon_{\rho \sigma}^{\mu \nu} v_{B}^{\rho} v_{D^{*}}^{\sigma} h_{V}(w) \\
\frac{\left\langle D^{*}\left(p_{D^{*}}, \epsilon^{\nu}\right)\right| \mathcal{A}^{\mu}\left|\bar{B}\left(p_{B}\right)\right\rangle}{2 \sqrt{m_{B} m_{D^{*}}}}=\frac{i}{2} \epsilon^{\nu *}\left[g^{\mu \nu}(1+w) h_{A_{1}}(w)-v_{B}^{\nu}\left(v_{B}^{\mu} h_{A_{2}}(w)+v_{D^{*}}^{\mu} h_{A_{3}}(w)\right)\right]
\end{gathered}
$$

- Playing with the polarization/momentum of the D^{*} we can calculate the different h_{X} form factors
- From the differential decay rate and the form factors (encoded in $\mathcal{F}(w)$) we can extract $V_{c b}$

$$
\frac{d \Gamma}{d w}=\frac{G_{F}^{2} M_{B}^{5}}{4 \pi^{3}} r^{3}\left(1-r^{2}\right)\left(w^{2}-1\right)^{\frac{1}{2}}\left|\eta_{E W}\right|^{2}\left|V_{c b}\right|^{2} \chi(w)|\mathcal{F}(w)|^{2}
$$

Introduction: The weak decay $\bar{B} \rightarrow D^{*} \ell \bar{\nu}$

- Helicity amplitudes

$$
H_{ \pm}=\sqrt{m_{B} m_{D^{*}}}(w+1)\left(h_{A_{1}}(w) \mp \sqrt{\frac{w-1}{w+1}} h_{V}(w)\right)
$$

$$
H_{0}=\sqrt{m_{B} m_{D^{*}}}(w+1) m_{B}\left[(w-r) h_{A_{1}}(w)+(w-1)\left(r h_{A_{2}}(w)+h_{A_{3}}(w)\right)\right] / \sqrt{q^{2}}
$$

$$
H_{S}=\sqrt{\frac{w^{2}-1}{r\left(1+r^{2}-2 w r\right)}}\left[(1+w) h_{A_{1}}(w)+(w r-1) h_{A_{2}}(w)+(r-w) h_{A_{3}}(w)\right]
$$

- Form factor in terms of the helicity amplitudes

$$
\chi(w)|\mathcal{F}|^{2}=\frac{1-2 w r+r^{2}}{12 m_{B} m_{D^{*}}(1-r)^{2}}\left(H_{0}^{2}(w)+H_{+}^{2}(w)+H_{-}^{2}(w)\right)
$$

Introduction: Available data and simulations

- Using $15 N_{f}=2+1$ MILC ensembles of sea asqtad quarks
- The heavy quarks are treated using the Fermilab action

Analysis: Two-point functions

- Used three different smearings: point-point (d, d), smeared-smeared $(1 S, 1 S)$ and the symmetric average $(d, 1 S)$ and $(1 S, d)$.
- The point sources help with the excited states, whereas the smeared sources increase the accuracy of the ground state
- $t_{\text {Min }}$ in physical units is common to all the ensembles, $t_{\text {Max }}$ is chosen when the points reach $20 \%-30 \%$ error
- Two sets of different data
- D^{*} momenta $(1,0,0)$ and $(2,0,0)$ in lattice units, distinguish parallel from perpendicular momenta ($\perp, \|$ to the polarization or the current), six correlators per ensemble and momentum
- We distinguish $Z_{\|}$and Z_{\perp}, as it will be required for the 3pt functions
- Zero momentum for both mesons and 8 additional momenta for D^{*} use an average momentum, three correlators per ensemble and momentum
- Done 2 oscillating +2 non-oscillating and $3+3$ fits to ensure stability of the results

Analysis: Two-point functions

- Ansatz for a $N+N$ fit:

$$
C_{2 p t}(t)=\sum_{i=0,2,4 \ldots}^{2 N-1}[\underbrace{Z_{i}\left(e^{-E_{i} t}+e^{-E_{i}(T-t)}\right)}_{\text {Non-oscillating }}+\underbrace{(-1)^{t} Z_{i+1}\left(e^{-E_{i} t}+e^{-E_{i}(T-t)}\right)}_{\text {Oscillating }}]
$$

Analysis: Three-point functions

- Used two (three) different smearings
- Fit ratios of three-point functions $R(t, T)=\langle\ldots\rangle /\langle\ldots\rangle$ that cancel some normalization factors and leading exponentials
- The oscillating states are suppressed through a clever weighted average

$$
\bar{R}(t, T)=\frac{1}{2} R(t, T)+\frac{1}{4} R(t, T+1)+\frac{1}{4} R(t+1, T+1)
$$

- The fit range in physical units is common to all the ensembles per observable
- General ansatz:

$$
\bar{R}(t, T)=R\left(1+A e^{-\Delta E_{X} t}+B e^{-\Delta E_{Y}(T-t)}\right)
$$

Analysis: Three-point functions

Calculated three-point functions

$$
\frac{\left\langle D^{*}(p)\right| \mathbf{V}\left|D^{*}(0)\right\rangle}{\left\langle D^{*}(p)\right| V_{4}\left|D^{*}(0)\right\rangle} \quad \rightarrow x_{f}, \quad w=\frac{1+x_{f}^{2}}{1-x_{f}^{2}}
$$

$$
\begin{array}{rlll}
\frac{\left\langle D^{*}\left(p_{\perp}, \varepsilon_{\|}\right)\right| \mathbf{A}|\bar{B}(0)\rangle\langle\bar{B}(0)| \mathbf{A}\left|D^{*}\left(p_{\perp}, \varepsilon_{\|}\right)\right\rangle^{*}}{\left\langle D^{*}(0)\right| V_{4}\left|D^{*}(0)\right\rangle\langle\bar{B}(0)| V_{4}|\bar{B}(0)\rangle} & \rightarrow R_{A_{1}}, & h_{A_{1}}=\left(1-x_{f}^{2}\right) R_{A_{1}}^{\frac{1}{2}} \\
\frac{\left\langle D^{*}\left(p_{\perp}, \varepsilon_{\perp}\right)\right| \mathbf{V}|\bar{B}(0)\rangle}{\left\langle D^{*}\left(p_{\perp}, \varepsilon_{\|}\right)\right| \mathbf{A}|\bar{B}(0)\rangle} & \rightarrow X_{V}, & h_{V}=\frac{2}{\sqrt{w^{2}-1}} R_{A_{1}} X_{V} \\
\frac{\left\langle D^{*}\left(p_{\|}, \varepsilon_{\|}\right)\right| \mathbf{A}|\bar{B}(0)\rangle}{\left\langle D^{*}\left(p_{\perp}, \varepsilon_{\|}\right)\right| \mathbf{A}|\bar{B}(0)\rangle} & \rightarrow R_{1}, & h_{A_{3}}=\frac{2}{w^{2}-1} R_{A_{1}}\left(w-R_{1}\right)
\end{array}
$$

$$
\frac{\left\langle D^{*}\left(p_{\perp}, \varepsilon_{\|}\right)\right| A_{4}|\bar{B}(0)\rangle}{\left\langle D^{*}\left(p_{\perp}, \varepsilon_{\|}\right)\right| \mathbf{A}|\bar{B}(0)\rangle} \rightarrow R_{0}
$$

$$
h_{A_{2}}=\frac{2}{w^{2}-1} R_{A_{1}}\left(w R_{1}-\sqrt{w^{2}-1} R_{0}-1\right)
$$

* Phys.Rev. D66, 01503 (2002)

Analysis: Uncorrected form factors

Analysis: Heavy quark mistuning corrections

- The simulations are run at approximate physical values of m_{c}, m_{b}
- After the runs the results are corrected for the differences between the calculated and the physical masses

Correction process
(1) For a particular ensemble correlators are computed at different m_{c}, m_{b}
(2) All the ratios are calculated for the new values of the heavy quark masses, and the form factors are extracted

- The derivative of combinations of the form factors with respect to the heavy quark masses is fitted to a suitable function
(- All the form factors are corrected using these results
- Shifts are small, but add a small correlation among all data points
- Corrections in m_{c} are noticeable, corrections in m_{b} are much smaller than statistical errors

Analysis: The chiral-continuum limit

- Extrapolation to the physical pion mass described by EFTs
- Functional form explicitly known

$$
\begin{gathered}
h_{A_{1}}(w)=\underbrace{1+\frac{X_{A_{1}}\left(\Lambda_{\chi}\right)}{m_{c}^{2}}+\frac{g_{D^{*}-D \pi}^{2}}{48 \pi^{2} f_{\pi}^{2} r_{1}^{2}} \log _{\mathrm{SU} 3}\left(a, m_{l}, m_{s}, \Lambda_{Q C D}\right)}_{\text {NLO } \chi \mathrm{PT}+\mathrm{HQET}}- \\
\underbrace{\rho^{2}(w-1)+k(w-1)^{2}}_{w \text { dependence }} \underbrace{+c_{1} x_{l}+c_{2} x_{l}^{2}+c_{a 1} x_{a^{2}}+c_{a 2} x_{a^{2}}^{2}+c_{a, m} x_{l} x_{a^{2}}}_{\text {NNLO } \chi \mathrm{PT}}
\end{gathered}
$$

with

$$
x_{l}=B_{0} \frac{m_{l}}{\left(2 \pi f_{\pi}\right)^{2}}, \quad x_{a^{2}}=\left(\frac{a}{4 \pi f_{\pi} r_{1}^{2}}\right)^{2}
$$

Analysis: Chiral-continuum fits

- Preliminary results, the (blinded) renormalization factors are included

Analysis: Chiral-continuum fits

- Preliminary results, the (blinded) renormalization factors are included

Analysis: z-Expansion

- Conformal transformation

$$
z=\frac{\sqrt{w+1}-\sqrt{2}}{\sqrt{w+1}+\sqrt{2}}
$$

- Kinematic range $w_{\text {Min }}=1 \rightarrow z_{\text {Min }}=0, w_{\operatorname{Max}}=\frac{1+r^{2}}{2 r} \rightarrow z_{\text {Max }}=\left(\frac{\sqrt{r}-1}{\sqrt{r}+1}\right)^{2}$
- Use BGL expansion (less constrained than CLN)

$$
f_{X}(z)=\frac{1}{\phi_{f_{X}} B_{f_{X}}} \sum_{j} k_{j} z^{j}
$$

- $B_{f_{X}}$ Blaschke factors, includes contributions from the poles in the kinematic range
- $\phi_{f_{X}}$ is called outer function and must be computed for each form factor

Analysis: z-Expansion

- The expansion is performed on different (more convenient) form factors

$$
\begin{array}{rll}
g= & \frac{h_{V}(w)}{\sqrt{m_{B} m_{D^{*}}}} & =\frac{1}{\phi_{g}(z) B_{g}(z)} \sum_{j} a_{j} z^{j} \\
f= & \sqrt{m_{B} m_{D^{*}}}(1+w) h_{A_{1}}(w) & =\frac{1}{\phi_{f}(z) B_{f}(z)} \sum_{j} b_{j} z^{j} \\
\mathcal{F}_{1}= & =\frac{1}{\phi_{\mathcal{F}_{1}}(z) B_{\mathcal{F}_{1}}(z)} \sum_{j} c_{j} z^{j} \\
\mathcal{F}_{2}= & \frac{\sqrt{q^{2}} H_{0}}{} \quad \frac{\sqrt{q^{2}}}{m_{D^{*}} \sqrt{w^{2}-1}} H_{S} & =\frac{1}{\phi_{\mathcal{F}_{2}}(z) B_{\mathcal{F}_{2}}(z)} \sum_{j} d_{j} z^{j}
\end{array}
$$

- Constraint $\mathcal{F}_{1}(z=0)=\left(m_{B}-m_{D^{*}}\right) f(z=0)$
- BGL unitarity constraints

$$
\sum_{j} a_{j}^{2} \leq 1, \quad \sum_{j} b_{j}^{2}+c_{j}^{2} \leq 1
$$

Analysis: Lattice result and joint fit

Summary

- Blinded calculation almost completed
- Potential to improve errors and quality of fits
- Complete error budget is WIK
- Can potentially solve the inclusive-exclusive tension
- Next steps:
- Calculation of $R\left(D^{*}\right)$
- Use different actions to improve precision (HISQ + Fermilab, HISQ on HISQ...)

