$\mathcal{N}=1$ Supersymmetric $S U(3)$ Gauge Theory - Pure Gauge sector with a twist

Marc Steinhauser

in collaboration with
A. Sternbeck, B. Wellegehausen, A. Wipf

Friedrich Schiller University Jena

Theoretical Physics Institute

Standard model of particle physics

- describes successfully what we observe at $\lesssim \mathcal{O}(10 \mathrm{TeV})$

Open questions

- Higgs mass
- dark matter
- unification of forces
\Rightarrow not complete
\Rightarrow more fundamental theory?

Possible solution

introduce supersymmetry

Table of content

$1 \mathcal{N}=1$ Super-Yang-Mills theory (recap)

2 SYM on the Lattice
■ Twist term

- Results

3 DD α AMG

$\mathcal{N}=1$ Super-Yang-Mills theory

Fields

- Gauge boson (gluon) $A_{\mu}(x)$ in the adjoint representation
- Super partner (gluino) $\lambda(x)$ is Majorana fermion in the adjoint representation

On-shell Lagrange density

$$
\mathcal{L}_{\text {SYM }}=\operatorname{tr}\left(-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{\mathrm{i}}{2} \bar{\lambda} \phi \lambda \quad\right)
$$

Supersymmetry: Relation between fermionic matter particles and bosonic force particles

$$
\delta_{\epsilon} A_{\mu}=\mathrm{i} \bar{\epsilon} \gamma_{\mu} \lambda, \quad \delta_{\epsilon} \lambda=\mathrm{i} \Sigma_{\mu \nu} F^{\mu \nu} \epsilon
$$

$\overline{\mathcal{N}}=1$ Super-Yang-Mills theory

Fields

- Gauge boson (gluon) $A_{\mu}(x)$ in the adjoint representation
- Super partner (gluino) $\lambda(x)$ is Majorana fermion in the adjoint representation

On-shell Lagrange density

$$
\mathcal{L}_{\mathrm{SYM}}=\operatorname{tr}\left(-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{\mathrm{i}}{2} \bar{\lambda} \phi \lambda-\frac{m_{\mathrm{g}}}{2} \bar{\lambda} \lambda\right)
$$

Supersymmetry: Relation between fermionic matter particles and bosonic force particles

$$
\delta_{\epsilon} A_{\mu}=\mathrm{i} \bar{\epsilon} \gamma_{\mu} \lambda, \quad \delta_{\epsilon} \lambda=\mathrm{i} \Sigma_{\mu \nu} F^{\mu \nu} \epsilon
$$

Softly broken by gluino mass term

Symmetries

Chiral (R) symmetry breaking in $S U(3)$ SYM theory

- Global chiral $U(1)_{\mathrm{A}}$ symmetry: $\lambda \mapsto \mathrm{e}^{\mathrm{i} \alpha \gamma_{5}} \lambda$
- Due to anomaly only \mathbb{Z}_{6} remnant symmetry

$$
\lambda \mapsto \mathrm{e}^{\mathrm{i} \frac{2 \pi n}{6} \gamma_{5}} \lambda \text { with } n \in\{1, \ldots, 6\}
$$

- Spontaneously broken to \mathbb{Z}_{2} symmetry in consequence of gluino condensate $\langle\bar{\lambda} \lambda\rangle \neq 0 \rightarrow 3$ different vacua

The chiral limit

$$
D_{\mathrm{W}}(x, y)=(4+m \quad) \delta_{x, y}-\frac{1}{2} \sum_{\mu= \pm 1}^{ \pm 4}\left(\mathbb{1}-\gamma_{\mu}\right) \mathcal{V}_{\mu}(x) \delta_{x+\hat{\mu}, y}
$$

with adjoint representation $\left[\mathcal{V}_{\mu}(x)\right]_{a b}=2 \operatorname{tr}\left[\mathcal{U}_{\mu}^{\dagger}(x) T_{a} \mathcal{U}_{\mu}(x) T_{b}\right]$

New approach: Twist Term

$$
D_{\mathrm{W}}(x, y)=(4+m \quad) \delta_{x, y}-\frac{1}{2} \sum_{\mu= \pm 1}^{ \pm 4}\left(\mathbb{1}-\gamma_{\mu}\right) \mathcal{V}_{\mu}(x) \delta_{x+\hat{\mu}, y}
$$

Feature of SYM

- Particular directions of \mathbb{Z}_{6} symmetry are favored by gluino condensate

New approach: Twist Term

$$
D_{\mathrm{W}}^{\mathrm{tw}}(x, y)=\left(4+m+\mathrm{i} \mu \gamma_{5}\right) \delta_{x, y}-\frac{1}{2} \sum_{\mu= \pm 1}^{ \pm 4}\left(\mathbb{1}-\gamma_{\mu}\right) \mathcal{V}_{\mu}(x) \delta_{x+\hat{\mu}, y}
$$

Feature of SYM

- Particular directions of \mathbb{Z}_{6} symmetry are favored by gluino condensate
- Deform lattice action by adding parity-breaking mass μ resembling a twisted mass
- m breaks chiral symmetry explicitly and generates a condensate $\sim\langle\bar{\lambda} \lambda\rangle$
- μ leads to a condensate $\sim\left\langle\bar{\lambda} \gamma_{5} \lambda\right\rangle$

New approach: Twist Term

$$
D_{\mathrm{W}}^{\mathrm{tw}}(x, y)=\left(4+m+\mathrm{i} \mu \gamma_{5}\right) \delta_{x, y}-\frac{1}{2} \sum_{\mu= \pm 1}^{ \pm 4}\left(\mathbb{1}-\gamma_{\mu}\right) \mathcal{V}_{\mu}(x) \delta_{x+\hat{\mu}, y}
$$

Feature of SYM

- Particular directions of \mathbb{Z}_{6} symmetry are favored by gluino condensate
- Deform lattice action by adding parity-breaking mass μ resembling a twisted mass
- m breaks chiral symmetry explicitly and generates a condensate $\sim\langle\bar{\lambda} \lambda\rangle$
- μ leads to a condensate $\sim\left\langle\bar{\lambda} \gamma_{5} \lambda\right\rangle$
\Rightarrow Possibility to get closer to chiral symmetry and supersymmetry at finite lattice spacing?

Mesonic Supermultiplet

$a-\eta^{\prime}$

$a-f_{0}$

Gluino-Glue gg

Mesonic Supermultiplet

$\mathrm{a}-\eta^{\prime}$

1

$a-f_{0}$

1

Mesonic Supermultiplet

$a-\pi$

a-a

Connected Correlators

$$
D_{\mathrm{W}}^{\mathrm{tw}}(x, y)=\left(4+m+\mathrm{i} \mu \gamma_{5}\right) \delta_{x, y}-\frac{1}{2} \sum_{\mu= \pm 1}^{ \pm 4}\left(\mathbb{1}-\gamma_{\mu}\right) \mathcal{V}_{\mu}(x) \delta_{x+\mu, y}
$$

Connected Correlators

$$
D_{\mathrm{W}}^{\mathrm{tw}}(x, y)=\left(4+m+\mathrm{i} \mu \gamma_{5}\right) \delta_{x, y}-\frac{1}{2} \sum_{\mu= \pm 1}^{ \pm 4}\left(\mathbb{1}-\gamma_{\mu}\right) \mathcal{V}_{\mu}(x) \delta_{x+\mu, y}
$$

$$
m_{\mathrm{a}-\pi} / m_{\mathrm{a}-a}-1
$$

Connected Correlators

\Rightarrow improvement of the chiral symmetry \& supersymmetry at finite lattice spacing may be possible

Mesonic Supermultiplet

$a-\eta^{\prime}$

$a-f_{0}$

Gluino-Glue gg

Mesonic States

Figure: $8^{3} \times 16$, preliminary

Mesonic States

45° twisted

Figure: $16^{3} \times 32$, preliminary

Sign of the Pfaffian

Wilson-Dirac operator $D_{\mathrm{W}}=D_{\mathrm{W}}^{\mathrm{w}}(\mu=0)$

- is γ_{5}-Hermitian: $\left(\gamma_{5} D_{\mathrm{W}}\right)^{\dagger}=\gamma_{5} D_{\mathrm{W}}$
- is \mathcal{C}-Antisymmetric: $\left(\mathcal{C} D_{\mathrm{W}}\right)^{\top}=-\mathcal{C} D_{\mathrm{W}}$
- $\operatorname{det}\left(D_{\mathrm{w}}\right) \in \mathbb{R}^{+}$
- $\operatorname{Pf}\left(D_{\mathrm{W}}\right) \in \mathbb{R}$

Sign of the Pfaffian

Wilson-Dirac operator $D_{\mathrm{W}}=D_{\mathrm{W}}^{\mathrm{w}}(\mu=0)$

- is γ_{5}-Hermitian: $\left(\gamma_{5} D_{\mathrm{W}}\right)^{\dagger}=\gamma_{5} D_{\mathrm{W}}$
- is \mathcal{C}-Antisymmetric: $\left(\mathcal{C} D_{\mathrm{W}}\right)^{\top}=-\mathcal{C} D_{\mathrm{W}}$
- $\operatorname{det}\left(D_{\mathrm{w}}\right) \in \mathbb{R}^{+}$
- $\operatorname{Pf}\left(D_{\mathrm{W}}\right) \in \mathbb{R}$

Twisted Wilson-Dirac operator $D_{\mathrm{W}}^{\mathrm{W}}(\mu \neq 0)$

- in general $\operatorname{Pf}\left(D_{\mathrm{W}}^{\mathrm{W}}\right) \in \mathbb{C}$
- in continuum theory $m \rightarrow m_{\text {crit }}, \mu \rightarrow 0, a \rightarrow 0: \operatorname{Pf}\left(D_{\mathrm{W}}^{\mathrm{tW}}\right) \in \mathbb{R}$
- at finite lattice spacing: phase of $\operatorname{Pf}\left(D_{\mathrm{W}}^{\mathrm{tW}}\right)=\left|\operatorname{Pf}\left(D_{\mathrm{W}}^{\mathrm{tW}}\right)\right| \cdot \mathrm{e}^{\mathrm{i} \alpha}$ negligible

Sign of the Pfaffian

Sign of the Pfaffian

extrapolated to $16^{3} \times 32$: $1-\cos (\alpha)<0.035$

DD α AMG

Why?

- Measurement of $\mathrm{a}-\eta^{\prime} \& \mathrm{a}-f_{0}$ correlators requires many stochastic estimators
- Multigrid algorithm accelerates the inversion of $D x=y$

Code Framework

Code Modifications

DD α AMG

Why?

Code Framework

https://github.com/sbacchio/DDalphaAMG

- Code designers: Matthias Rottmann, Simone Bacchio, Artur Strebel, Simon Heybrock, Björn Leder
- Branch of Simone Bacchio includes the twisted mass term
- Hardcoded for gauge group $S U(3)$ in fundamental representation

Code Modifications

DD α AMG

Why?

Code Framework

Code Modifications

- Generalization for arbitrary N_{c} and representation using macros
- Integration into our SYM code framework

Benchmarks

Setting

- 100 stochastic estimators
- 5 point sources
- SU(3) in fundamental \& adjoint representation
- DD α AMG parameters
- 2 levels
- block size 2^{4}
- mixed precision
- FGMRES + red-black Schwarz

Benchmarks

Setting

- 100 stochastic estimators
- 5 point sources
- $\operatorname{SU}(3)$ in fundamental \& adjoint representation
- DD α AMG parameters
- 2 levels
- block size 2^{4}
- mixed precision
- FGMRES + red-black Schwarz
fundamental representation

$$
\begin{aligned}
& \text { Speedup: } \\
& 8^{3} \times 16: \sim 9 \\
& 16^{3} \times 32: \sim 16
\end{aligned}
$$

Benchmarks

Setting

- 100 stochastic estimators
- 5 point sources
- SU(3) in fundamental \& adjoint representation
- DD α AMG parameters
- 2 levels
- block size 2^{4}
- mixed precision
- FGMRES + red-black Schwarz
adjoint representation

Speedup:

$$
\begin{aligned}
& 8^{3} \times 16: \sim 12 \\
& 16^{3} \times 32: \sim 20
\end{aligned}
$$

Summary

SYM on the lattice

- Lattice breaks supersymmetry
- Gluino condensate breaks remnant chiral symmetry
- Fine tuning of bare gluino mass m (and μ) necessary
- Chiral symmetry of multiplet improved at finite lattice spacing with 45° twist

Outlook

Summary

SYM on the lattice

Outlook

- More statistics to verify $m_{\mathrm{a}-\eta^{\prime}} \approx m_{\mathrm{a}-f_{0}} \approx m_{g g}$ along 45° twist \Rightarrow improvement of the susy at finite lattice spacing may be possible
- Spectroscopy at 3 different couplings β for continuum limit
- Test DD α AMG in Monte Carlo updater

