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Lattice QCD and Nuclei

LUX DUNECUORE

Nuclear theory predictions are needed to extract or constrain new 
physics from intensity frontier experiments 

Lattice QCD can inform and test EFT power counting and models of 
heavy nuclei by calculating properties of simple nuclei

Increasing the range of nuclei directly accessible to LQCD will increase 
the reliability of low-energy nuclear theory predictions
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The Signal-to-Noise Problem

Parisi, Phys Rept 103 (1984), Lepage, TASI (1989), NPLQCD, PRD 79 (2009), Detmold and Endres, PRD 90 (2014), … 

LQCD nuclear correlation functions have StN ratios that decrease 
exponentially with increasing baryon number
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An exponentially decaying average phase always has exponential StN 
degradation

Average correlators are real. Individual correlators in generic gauge 
fields are complex 

Complex phase fluctuations give path integrals representing correlators 
sign problems

GN(p, t) = ⟨CN(p, t)⟩ = ⟨eRN(p,t)+iθN(p,t)⟩

The Sign(al-to-Noise) Problem

GN(p, t) = ∫ 𝒟U e−S(U)+RN(p,t;U)+iθN(p,t;U) =
1
N

N

∑
i=1

eRN(p,t;Ui)+iθN(p,t;Ui)

StN(Re[eiθ(t)]) = ⟨eiθ⟩
1
2 + 1

2 ⟨e2iθ⟩ − ⟨eiθ⟩2
∼ ⟨eiθ⟩ ∼ e−Mθ t
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Empirically, correlator magnitudes decay at a rate set by the pion mass, 
phase factors contribute remaining effective mass

MR = − ∂t ln ⟨eR(0,t)⟩ ∼
3
2

mπ Mθ = − ∂t ln ⟨eiθ(0,t)⟩ ∼ MN −
3
2

mπ

MR Mθ

MW and Savage, PRD 96 (2016)

t t

Correlation Function Phases
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Generic real, positive correlation functions, as well as early-time 
nucleons in LQCD, are log-normally distributed 

DeGrand, PRD 86 (2012)

Beane, Detmold, Orginos, Savage, J Phys G42 (2015)

Kaplan showed large-time nucleon correlators are better described by 
heavy-tailed stable distributions

Log-normal distributions arise 
in two-body potential models 
and products of generic 
random positive numbers 

Endres, Kaplan, Lee and Nicholson, PRL 107 (2011)

Hamber, Marinari, Parisi and Rebbi, Nucl Phys B225 (1983)

Guagnelli, Marinari, and Parisi, PLB 240 (1990)

Correlation Function Statistics

Broad, symmetric large-time distributions consistent with moment 
analysis by Savage

Grabowska, Kaplan, and Nicholson, PRD 87 (2012)

Porter and Drut, PRE 93 (2016)
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Products of phase factors have different central limit theorems, approach 
“wrapped normal” and eventually uniform distributions 

Real part of nucleon correlation functions well-described by marginalization 
of “complex log-normal distribution”

See e.g. N. I. Fisher, “Statistical Analysis of Circular Data” (1995)

PDF(R, θ) = e−(R−μR)2/(2σ2
R)

∞

∑
n=−∞

e−n2θ2/(2σ2
θ )

Re[C(t = 7)] Re[C(t = 30)]

Complex Log-Normal Distributions

MW, LATTICE 2017MW and Savage, PRD 96 (2016)
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Nucleon phase empirically well-described by wrapped-normal distribution  

Phase and log-magnitude time derivatives approach time independent, 
heavy-tailed wrapped stable distributions at late times

Heavy-Tailed Phase Velocity
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Generalized pencil-of-functions (GPoF): an interpolating operator that 
has been time evolved is still a good interpolating operator

MW and Savage (2017)

t

t+ ⌧src

Generalized GPoF (GGPoF): an 
interpolating operator time evolved 
with a modified Hamiltonian is still a 
good interpolating operator 

GN(p, t, τsrc) =
1
V ∑

x

eip⋅xΓαβ ⟨Nα(x, t)eHτsrcNβ(0)e−Hτsrc⟩ = GN(p, t + τsrc)

G(θN)
N (p, t, τsrc) =

1
V ∑

x

eip⋅xΓαβ ⟨eiθN(p,0)−iθN(p,−τsrc)Nα(x, t)Nβ(0, − τsrc)⟩

Phase fluctuations during source construction can be removed by adding 
phase reweighting to the time evolution operator used

StN [G(θN)
N (p, t, τsrc)] ∼ e−(E(p)− 3

2 mπ)tStN [GN(p, t, τsrc)] ∼ e−(E(p)− 3
2 mπ)(t+τsrc)

Aubin and Orginos (2010)

Dynamical Source Construction
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t+ ⌧src
t

⌧src = 0t,

⌧src = 0t,

t+ ⌧srct, ⌧src = 30

M✓
⇢ (t, ⌧src)

Noise independent of         after variance excited-state region

Correct ground-state energies empirically reproduced* ** 

τsrc

Phase Reweighted GGPoF
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t+ ⌧src
t

⌧src = 0t,

⌧src = 0t,

t+ ⌧srct, ⌧src = 30

M✓
⇢ (t, ⌧src)

*Can this be proven? Phase reweighting 
factors are non-local in time, spoiling 

standard spectral representation 

**Except in the isovector          channel…

Noise independent of         after variance excited-state region

Correct ground-state energies empirically reproduced* ** 

τsrc

Phase Reweighted GGPoF

0++
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Auxiliary Charged Static Fermions

1 = lim
e→0 ∫ 𝒟V𝒟H𝒟H e−∑x H(x)[eiV4(x)H(x + 4̂) − H(x)]+ 1

4e2 Vμν(x)Vμν(x)δ (∂μVμ − ∂2f(x))

GH(t, f ) = ⟨Hs(x, t)Hs′ �(0)⟩ = δx,yδs,s′ �eif(0,t)−if(0,0)

Static fermion two-point function given by auxiliary field Wilson line, 
depends on auxiliary function gauge-fixing function

Auxiliary fields representing static quarks and an Abelian gauge field in 
the zero-coupling limit can be freely added to path integrals

The spectrum of auxiliary-charge zero states is independent of the 
auxiliary field gauge-fixing function 

= ∫ 𝒟H𝒟H e−∑x H(x)[eif(x+ ̂μ)−if(x)H(x + 4̂) − H(x)]
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GGPoF with Auxiliary Fields

G( f )
N (p, t, τsrc) =

1
V ∑

x

eip⋅xΓαβ ⟨Nα(x, t)H1(0)H1(0, − τsrc)Nβ(0, − τsrc)⟩
( f )

= Γαβ ∑
𝔫,𝔨

⟨0 |Nα |𝔫(p)⟩ e−E𝔫(p)t ⟨𝔫(p) |H1 |𝔨( f )⟩ e−E( f )
𝔨 τsrc ⟨𝔨( f ) |H1Nβ |0⟩

= ∑
𝔫

Z𝔫(p)Z( f )
𝔫 (p, τsrc)e−E𝔫(p)t

f(t) = θN(t, U) = arg CN(t, U)

GGPoF nucleon two-point function reproduced by choosing a gluon-field 
dependent auxiliary gauge-fixing function

Spectral representation for correlators with hadrons and auxiliary fermions 
depends on gauge-fixing function (only) between auxiliary source/sink

G(θN)
N (p, t, τsrc) =

1
V ∑

x

eip⋅xΓαβ ⟨eiθN(p,0)−iθN(p,−τsrc)Nα(x, t)Nβ(0, − τsrc)⟩ = ∑
𝔫

Z𝔫(p)Z(θN)
𝔫 (p, τsrc)e−E𝔫(p)t
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Meson GGPoF Results

Possible for                        to be non-zero in cases where

G(θΓ)
Γ (p, t, τsrc) =

1
V ∑

x

eip⋅x ⟨eiθΓ(0)−iθΓ(τsrc)[d̄Γu](x, t)[ūΓd](0, − τsrc)⟩ = ∑
𝔫

ZΓ
𝔫(p)ZΓ,(θN)

𝔫 (p, τsrc)e−E𝔫(p)t

Identical construction for generic hadrons, e.g. isovector mesons

ZΓ
𝔫(p)ZΓ,(θN)

𝔫 (p, τsrc) ZΓ
𝔫(p)ZΓ

𝔫(p) = 0

PRELIMINARY

ūd → eiθūd equivalent to U(1)u−d

background field: breaks 
conservation of total isospin!

Isovector mesons:

qqq → eiθqqq equivalent to U(1)B
background field: preserves all 

symmetries of interest

Baryons and nuclei:
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Scalar Signal-to-Noise Problems
Is exponential StN degradation of complex correlators inevitable? 

Toy model: free (or interacting) complex scalar field theory in (0+1)D 

S =
L−1

∑
t=0

(φ*(t + 1) − φ*(t))(φ(t + 1) − φ(t)) − M2 |φ2 |

Scalar correlators have 
exponential StN degradation 
set by total charge contained in 
spacetime volume

GQ,2P = ⟨φ(t)Q |φ(t) |2P φ*(t)Q |φ(0) |2P ⟩ ∼ e−EQ,2P t

StN[GQ,2P] ∼ e−EQ,0 t ∼ e−M|Q|t
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Scalar Sign(al-to-Noise) Problems

G1,0 = ⟨eℛ(t)+iΘ(t)⟩

Scalar field phase gives correlation function path integrals a 
sign problem, responsible for exponential StN problem

Distribution of phase fluctuations approximately wrapped normal

PDF(Θ) =
1

2π ∑
n∈ℤ

e−inΘ
t

∏
t′�=1 [

I|n|(κ(t))
I0(κ(t)) ]

κ(t) = 2 |φ(t) | |φ(t − 1) |

≈
1

2π ∑
n∈ℤ

e−inΘe−tn2/(2⟨κ⟩)

= ∫ 𝒟φ*𝒟φ e−S+ℛ(t)+iΘ(t)

No magnitude fluctuations, 
small phase fluctuations
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Wrapped normal approximation has exponential StN problem

Phase Unwrapping

What if we “unwrap” the phase?

Θ̃ (t) =
t

∑
t′�=1

Θ(t′�) − Θ(t′�− 1) + 2πν(t′�)

StN[⟨cos Θ⟩] ∼ e−t/(2κ)

StN[e− Θ̃ 2/2] ∼
2κ
t

⟨cos Θ⟩ = ⟨cos Θ̃ ⟩ = e ∑∞
n=1 κn( Θ̃ )/n!

Average phase can be reconstructed 
from unwrapped phase cumulants

Unwrapped cumulants avoid 
exponential StN problem

Detmold, Kanwar, MW (2018)

Θ̃

Θ

t
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Phase Unwrapping Systematics
Large phase jumps in regions of small magnitude lead to ambiguities 

in phase unwrapping

Different definitions lead to large numerical discrepancies for all points 
after a large phase jump

Heavy-tailed phase jump distributions appear in 1D scalar field 
correlators as well as LQCD baryons  

— Are large phase jumps a generic feature of LQFT? 
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Phase Unwrapping Precision

Leading-order unwrapped cumulant results avoid exponential 
StN degradation, higher-order cumulants noisier

Accuracy of leading-order result depends sensitively on 
definition, best to assume smoothness on physical scales



Outlook

Multi-dimensional phase unwrapping 
in other applications can be more 
robust, work to control LQFT 
phase unwrapping systematics in 
progress

Phase unwrapping provides correlator estimates that avoid exponential 
StN degradation but systematic errors are not fully controlled

The baryon StN problem arises from phase fluctuations

Removing phase fluctuations allows sources to be dynamically evolved 
towards the ground state without additional StN degradation

Ying (2006)

Stay tuned for Gurtej Kanwar’s talk, up next


