Exclusive Channel Study of the Muon HVP

Aaron S. Meyer (ameyer@quark.phy.bnl.gov)
in collaboration with:
Mattia Bruno, Taku Izubuchi, Christoph Lehner
for the RBC/UKQCD Collaboration

Brookhaven National Laboratory

July 27, 2018

36th International Symposium on Lattice Field Theory

The RBC & UKQCD collaborations

BNL and BNL/RBRC

Yasumichi Aoki (KEK) Mattia Bruno Taku Izubuchi Yong-Chull Jang Chulwoo Jung Christoph Lehner Meifeng Lin Aaron Meyer Hiroshi Ohki Shigemi Ohta (KEK) Amarjit Soni

UC Boulder

Oliver Witzel

Columbia University

Ziyuan Bai Norman Christ Duo Guo Christopher Kelly Bob Mawhinney Masaaki Tomii Jiqun Tu Bigeng Wang Tianle Wang Evan Wickenden Yidi Zhao

University of Connecticut

Tom Blum Dan Hoying (BNL) Luchang Jin (RBRC) Cheng Tu

Edinburgh University

Peter Boyle
Guido Cossu
Luigi Del Debbio
Tadeusz Janowski
Richard Kenway
Julia Kettle
Fionn O'haigan
Brian Pendleton
Antonin Portelli
Tobias Tsang
Azusa Yamaguchi

<u>KEK</u>

Julien Frison

University of Liverpool

Nicolas Garron

<u>MIT</u>

David Murphy

Peking University

Xu Feng

University of Southampton

Jonathan Flynn Vera Guelpers James Harrison Andreas Juettner James Richings Chris Sachrajda

Stony Brook University

Jun-Sik Yoo Sergey Syritsyn (RBRC)

York University (Toronto)

Renwick Hudspith

4□ > ←
4□ > ←
4□ > ←
5
6
6
7
9
6

- Introduction
 - Motivation from Experiment
 - ► Tensions in Experiment
- Computation
 - ▶ Lattice Parameters
 - GEVP Study
- Results
 - Correlation Function Reconstruction
 - ▶ (Improved) Bounding Method
- Conclusions/Outlook

Introduction

Pieces of Muon g-2 Theory Prediction

cco or ividori g		Carction
Contribution	$Value imes \! \check{10}^{10}$	Uncertainty $ imes 10^{10}$
QED	11 658 471.895	0.008
EW	15.4	0.1
HVP LO	692.5	2.7
HVP NLO	-9.84	0.06
HVP NNLO	1.24	0.01
Hadronic light-by-light	10.5	2.6
Total SM prediction	11 659 181.7	3.8
BNL E821 result	11 659 209.1	6.3
Fermilab E989 target		pprox 1.6

Experiment-Theory difference is $27.4(7.3) \implies 3.7\sigma$ tension!

Tensions in Experiment

R-ratio data for $ee \to \pi\pi$ exclusive channel, $\sqrt{s}=0.6-0.9~{\rm GeV}$ region Tension between most precise measurements Other measurements not precise enough to favor one over the other

Avoid tension by computing precise lattice-only estimate of a_{μ}^{HVP} Use lattice QCD to inform experiment, resolve discrepancy

Interplay between R-ratio, Lattice

w_t from Bernecker, H. Meyer: 1107.4388 [hep-lat]

R-Ratio, Lattice precise in complimentary regions Lattice uncertainty dominated by long-distance region

 \implies need to address long-distance region to reduce lattice uncertainty

Precisely determine E_n and $\langle \Omega | V_\mu | n \rangle$ from exclusive $\pi\pi$ study Use those to approximate $C^{\text{latt.}}(t)$ for large t

Computation

Computation Details

Computed on 2+1 flavor Möbius Domain Wall Fermions for valance and sea, M_π at physical value on all ensembles

All results in this talk on one coarse ensemble:

- ► $a \approx 0.20 \text{ fm} \approx (1.015 \text{ GeV})^{-1}$,
- $ightharpoonup 24^3 \times 64 \ (4.8 \ {
 m fm})$

Extending program to three other ensembles:

- ▶ 2 ensembles on same volume volume dependence (see C. Lehner's talk)
- multiple lattice spacings continuum extrapolation

Distillation

Phys.Rev.D 80, 054506 (0905.2160 [hep-lat])

Eigenvectors of (spin-diagonal) Laplacian operator used to construct projection matrices ($M \to \infty$ gives identity)

$$\mathcal{P}_{t;xy}^{ab} = \sum_{i=0}^{M-1} \langle x | i_t^a \rangle \langle i_t^b | y \rangle$$

Inserting distillation projection matrices smears quarks in bilinear

$$\sum_{a} \bar{Q}^{a}(z) \Gamma Q^{a}(z) \rightarrow \sum_{xyacb} \bar{Q}^{a}(x) \mathcal{P}_{t;xz}^{ac} \Gamma \mathcal{P}_{t;zy}^{cb} Q^{b}(y)$$

$$= \sum_{xyacb} \bar{Q}^{a}(x) f^{ac}(x-z) \Gamma f^{cb}(z-y) Q^{b}(y)$$

Propagators contracted with eigenvectors at source & sink creates "perambulator" objects

$$\textit{M}_{t,\beta\alpha}^{ji} = \sum_{\textit{xy}} \sum_{\textit{ab}} \left\langle j_t^\textit{b} | \textit{y} \right\rangle \left(D_{\textit{yx},\beta\alpha}^{\textit{ba}} \right)^{-1} \left\langle \textit{x} | \textit{i}_0^\textit{a} \right\rangle$$

Perambulators stitched together to form desired N-point correlation functions

Fit Procedure

Operators in I = 1 P-wave channel

Local vector current operator:

▶ Local
$$\mathcal{O}_0 = \sum_x \bar{\psi}(x) \gamma_\mu \psi(x)$$
, $\mu \in \{1, 2, 3\}$

Three 2π operators with $\mathcal{O}_{1,2,3}$ given by $\vec{p}_\pi \in \frac{2\pi}{L} \times \{(1,0,0),(1,1,0),(1,1,1)\}$

$$\mathcal{O}_n = \left| \sum_{xyz} \bar{\psi}(x) f(x-z) e^{-i\vec{p}_{\pi}\cdot\vec{z}} \gamma_5 f(z-y) \psi(y) \right|^2$$

Correlators arranged in a 4×4 symmetric matrix:

Extra operator with $\vec{p}_{\pi}=\frac{2\pi}{L}\times(2,0,0)$ to estimate excited state systematics

Generalized EigenValue Problem (GEVP) to estimate overlaps & energies

$$C(t) \ V = C(t + \delta t) \ V \ \Lambda(\delta t); \quad \Lambda_{nn}(\delta t) \sim e^{+E_n \delta t} \ , \ V_{im} \propto \langle \Omega | \ \mathcal{O}_i \ | m \rangle$$

Reconstruct exponential dependence of local vector correlation function

$$C_{ij}^{\mathrm{latt.}}(t) = \sum_{n=0}^{N} \left\langle \Omega \right| \mathcal{O}_{i} \left| n \right\rangle \left\langle n \right| \mathcal{O}_{j} \left| \Omega \right\rangle e^{-\mathcal{E}_{n}t}$$

In practice, only finite N necessary to model correlation function

GEVP Results

Scatter points from solving GEVP at fixed δt

$$C(t) V = C(t + \delta t) V \Lambda(\delta t), \quad \Lambda_{nn}(\delta t) \sim e^{+E_n \delta t}$$

Black lines are from fit ansatz: $f_i(t) = E_i + \alpha e^{-(E_N - E_i)t}$

Overlaps picked to have approximately same contamination from excited states Bands are extracted spectrum/overlaps (= E_i), with excited state systematics Systematics estimated from difference between 4- and 5-operator, GEVP basis

Correlation Function Reconstruction

GEVP results to reconstruct long-distance behavior of local vector correlation function needed to compute connected HVP

Explicit reconstruction good estimate of correlation function at long-distance, missing excited states at short-distance

More states \implies better reconstruction, can replace C(t) at shorter distances

Improved Bounding Method

Use known results in spectrum to make a precise estimate of upper & lower bound on a_{μ}^{HVP}

$$\widetilde{C}(t; t_{\mathsf{max}}, E) = \left\{ egin{array}{ll} C(t) & t < t_{\mathsf{max}} \ C(t_{\mathsf{max}}) e^{-E(t-t_{\mathsf{max}})} & t \geq t_{\mathsf{max}} \end{array}
ight.$$

Upper bound: $E = E_0$, lowest state in spectrum

Lower bound: $E = \log[\frac{C(t_{max})}{C(t_{max}+1)}]$

Good control over lower states in spectrum with exclusive reconstruction:

Replace $C(t) o C(t) - \sum_{n}^{N} |c_n|^2 e^{-E_n t}$

 \implies Long distance convergence now $\propto e^{-E_{N+1}t}$

⇒ Smaller overall contribution from neglected states

Add back contribution from reconstruction after bounding correlator

Bounding Method

No bounding method: $a_{\mu}^{HVP} = 577(31)$ Bounding method $t_{\rm max} = 2.1~{\rm fm}$, no reconstruction: $a_{\mu}^{HVP} = 566.8(9.0)$

Very large lattice spacing: $a^{-1}=1.015~{\rm GeV}$, finite volume effects Could expect 10-20% systematic errors

Bounding Method

No bounding method: $a_{\mu}^{HVP} = 577(31)$ Bounding method $t_{\rm max} = 2.1~{\rm fm}$, no reconstruction: $a_{\mu}^{HVP} = 566.8(9.0)$ Bounding method $t_{\rm max} = 1.7~{\rm fm}$, 1 state reconstruction: $a_{\mu}^{HVP} = 561.5(4.5)$

Very large lattice spacing: $a^{-1}=1.015~{
m GeV}$, finite volume effects Could expect 10-20% systematic errors

Bounding Method

No bounding method: Bounding method $t_{\text{max}} = 2.1 \text{ fm}$, no reconstruction: Bounding method $t_{\text{max}} = 1.7 \text{ fm}$, 1 state reconstruction: Bounding method $t_{\text{max}} = 1.6 \text{ fm}$, 2 state reconstruction:

Very large lattice spacing: $a^{-1} = 1.015 \text{ GeV}$, finite volume effects Could expect 10 - 20% systematic errors

Outlook and Conclusions

Summary

- ▶ g-2 is an interesting and exciting topic to work on!
- \blacktriangleright Tensions in experimental $ee \rightarrow \pi\pi$ data make independent study of exclusive channels valuable
- Lattice QCD is a first principles method capable of accessing necessary matrix elements
- Additional studies using correlated fits, additional ensembles in progress
- Study of exclusive channels able to significantly reduce statistical uncertainty on an all-lattice computation of muon HVP
 - ⇒ expect lattice-only calculation with precision comparable to R-ratio by 2020
- Part of ongoing lattice study to address all lattice systematics in HVP computation

Thanks

Computing time support from many sources:

- ANL
- BNL
- Oak Forest
- Hokusai
- USQCD
- XSEDE

Lots of data to analyze, lots of work ahead of us!

Thank you for your attention!

Backup

Error Budget

$a_{\mu}^{\mathrm{ud, conn, isospin}}$	$202.9(1.4)_S(0.2)_C(0.1)_V(0.2)_A(0.2)_Z$	649. $(14.2)_S$ $(2.8)_C$ $(3.7)_V$ $(1.5)_A$ $(0.4)_Z$ $(0.1)_{E48}$ $(0.1)_{E64}$
a s, conn, isospin	$27.0(0.2)_S(0.0)_C(0.1)_A(0.0)_Z$	$53.2(0.4)_S(0.0)_C(0.3)_A(0.0)_Z$
ac, conn, isospin	$3.0(0.0)_S(0.1)_C(0.0)_Z(0.0)_M$	$14.3(0.0)_S(0.7)_C(0.1)_Z(0.0)_M$
a uds, disc, isospin	$-1.0(0.1)_S(0.0)_C(0.0)_V(0.0)_A(0.0)_Z$	$-11.2(3.3)_S(0.4)_V(2.3)_L$
$a_{\mu}^{\text{uds, disc, isospin}}$ $a_{\mu}^{\text{QED, conn}}$ $a_{\mu}^{\text{QED, disc}}$ $a_{\mu}^{\text{QED, disc}}$ a_{μ}^{SIB}	$0.2(0.2)_S(0.0)_C(0.0)_V(0.0)_A(0.0)_Z(0.0)_E$	$5.9(5.7)_S(0.3)_C(1.2)_V(0.0)_A(0.0)_Z(1.1)_E$
$a_{\mu}^{\text{QED, disc}}$	$-0.2(0.1)_S(0.0)_C(0.0)_V(0.0)_A(0.0)_Z(0.0)_E$	$-6.9(2.1)_S(0.4)_C(1.4)_V(0.0)_A(0.0)_Z(1.3)_E$
a_{μ}^{SIB}	$0.1(0.2)_S(0.0)_C(0.2)_V(0.0)_A(0.0)_Z(0.0)_{E48}$	$10.\overline{6(4.3)_S(0.6)_C(6.6)_V(0.1)_A(0.0)_Z(1.3)_{E48}}$
$\frac{a_{\mu}^{SIB}}{a_{\mu}^{udsc, isospin}}$	$231.9(1.4)_S(0.2)_C(0.1)_V(0.3)_A(0.2)_Z(0.0)_M$	$705.9(14.6)_S(2.9)_C(3.7)_V(1.8)_A(0.4)_Z(2.3)_L(0.1)_{E48}$
		$(0.1)_{E64}(0.0)_{M}$
$a_{\mu}^{\text{QED, SIB}}$	$0.1(0.3)_S(0.0)_C(0.2)_V(0.0)_A(0.0)_Z(0.0)_E(0.0)_{E48}$	$9.5(7.4)_S(0.7)_C(6.9)_V(0.1)_A(0.0)_Z(1.7)_E(1.3)_{E48}$
$a_{\mu}^{\text{QED, SIB}}$ $a_{\mu}^{\text{R-ratio}}$	$460.4(0.7)_{RST}(2.1)_{RSY}$	
a_{μ}	$692.5(1.4)_S(0.2)_C(0.2)_V(0.3)_A(0.2)_Z(0.0)_E(0.0)_{E48}$	$715.4(16.3)_S(3.0)_C(7.8)_V(1.9)_A(0.4)_Z(1.7)_E(2.3)_L$
·	$(0.0)_b(0.1)_c(0.0)_{\overline{S}}(0.0)_{\overline{Q}}(0.0)_M(0.7)_{RST}(2.1)_{RSY}$	$(1.5)_{E48}(0.1)_{E64}(0.3)_{b}(0.2)_{c}(1.1)_{\overline{S}}(0.3)_{\overline{Q}}(0.0)_{M}$

TABLE I. Individual and summed contributions to a_{μ} multiplied by 10^{10} . The left column lists results for the window method with $t_0 = 0.4$ fm and $t_1 = 1$ fm. The right column shows results for the pure first-principles lattice calculation. The respective uncertainties are defined in the main text.

[Blum et al., (2018)]

Full program of computations to reduce uncertainties:

Reduce statistical uncertainties on light connected contribution

Compute QED contribution

Improve lattice spacing determination

Finite volume and continuum extrapolation study

Distillation Smearing Visualization

Free-field Laplacian in 2-dimensions, 242 volume More evecs, better ability to localize

9 evecs (57 equiv), $\sum_i p_i^2 \leq 2$

13 evecs (99 equiv), $\sum_{i} p_{i}^{2} \leq 4$

21 evecs (171 equiv), $\sum_{i} p_{i}^{2} \leq 5$