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Introduction
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Pieces of Muon g − 2 Theory Prediction
Contribution Value ×1010 Uncertainty ×1010

QED 11 658 471.895 0.008
EW 15.4 0.1
HVP LO 692.5 2.7
HVP NLO −9.84 0.06
HVP NNLO 1.24 0.01
Hadronic light-by-light 10.5 2.6
Total SM prediction 11 659 181.7 3.8
BNL E821 result 11 659 209.1 6.3
Fermilab E989 target ≈ 1.6

Experiment-Theory difference is 27.4(7.3) =⇒ 3.7σ tension!

[Blum et al., (2018)] 4 / 17



Tensions in Experiment

[Davier, KEK (2018)]

R-ratio data for ee → ππ exclusive channel,
√

s = 0.6− 0.9 GeV region
Tension between most precise measurements
Other measurements not precise enough to favor one over the other

Avoid tension by computing precise lattice-only estimate of aHVP
µ

Use lattice QCD to inform experiment, resolve discrepancy
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Interplay between R-ratio, Lattice

[Blum et al., (2018)]
acont.
µ =

∫∞
0 dt K(t)C cont.(t) alatt.

µ =
∑

t wtC latt.(t)

C cont.(t) =
∫∞

0 d
√

s s R(s) e−
√

st C latt.(t) =
∑

n | 〈Ω| O |n〉 |
2e−Ent

wt from Bernecker, H. Meyer: 1107.4388 [hep-lat]

R-Ratio, Lattice precise in complimentary regions
Lattice uncertainty dominated by long-distance region
=⇒ need to address long-distance region to reduce lattice uncertainty

Precisely determine En and 〈Ω|Vµ |n〉 from exclusive ππ study
Use those to approximate C latt.(t) for large t
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Computation
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Computation Details
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L 243 × 64

323 × 64
483 × 96643 × 128

Computed on 2 + 1 flavor Möbius Domain Wall Fermions for valance and sea,
Mπ at physical value on all ensembles

All results in this talk on one coarse ensemble:
I a ≈ 0.20 fm ≈ (1.015 GeV)−1,
I 243 × 64 (4.8 fm)

Extending program to three other ensembles:
I 2 ensembles on same volume - volume dependence (see C. Lehner’s talk)
I multiple lattice spacings - continuum extrapolation
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Distillation
Phys.Rev.D 80, 054506 (0905.2160 [hep-lat])

Eigenvectors of (spin-diagonal) Laplacian operator used to
construct projection matrices (M →∞ gives identity)

Pab
t;xy =

M−1∑
i=0

〈x |ia
t 〉 〈ib

t |y〉

Inserting distillation projection matrices smears quarks in bilinear∑
a

Q̄a(z)ΓQa(z)→
∑
xyacb

Q̄a(x)Pac
t;xz ΓPcb

t;zy Qb(y)

=
∑
xyacb

Q̄a(x)f ac (x − z)Γf cb(z − y)Qb(y)

Propagators contracted with eigenvectors at source & sink
creates “perambulator” objects

M ji
t,βα =

∑
xy

∑
ab

〈 jb
t |y〉 (Dba

yx,βα)−1 〈x |ia
0 〉

Perambulators stitched together to form desired N-point correlation functions
=⇒ ideal for creating 2π → 2π correlation functions
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Fit Procedure
Operators in I = 1 P-wave channel
Local vector current operator:

I Local O0 =
∑

x ψ̄(x)γµψ(x), µ ∈ {1, 2, 3}
Three 2π operators with O1,2,3 given by ~pπ ∈ 2π

L × {(1, 0, 0), (1, 1, 0), (1, 1, 1)}

On =
∣∣∣∑xyz ψ̄(x)f (x − z)e−i~pπ·~zγ5f (z − y)ψ(y)

∣∣∣2
Correlators arranged in a 4× 4 symmetric matrix:

⊗ O0 O1 O2 O3
O0 C(2)

ρ C(3)
ρ→ππ C(3)

ρ→ππ C(3)
ρ→ππ

O1 C(4)
ππ→ππ C(4)

ππ→ππ C(4)
ππ→ππ

O2 C(4)
ππ→ππ C(4)

ππ→ππ

O3 C(4)
ππ→ππ

Extra operator with ~pπ = 2π
L × (2, 0, 0) to estimate excited state systematics

Generalized EigenValue Problem (GEVP) to estimate overlaps & energies
C(t) V = C(t + δt) V Λ(δt) ; Λnn(δt) ∼ e+Enδt , Vim ∝ 〈Ω| Oi |m〉

Reconstruct exponential dependence of local vector correlation function

C latt.
ij (t) =

N∑
n

〈Ω| Oi |n〉 〈n| Oj |Ω〉 e−Ent

In practice, only finite N necessary to model correlation function
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GEVP Results
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Scatter points from solving GEVP at fixed δt

C(t) V = C(t + δt) V Λ(δt) , Λnn(δt) ∼ e+Enδt

Black lines are from fit ansatz: fi (t) = Ei + αe−(EN−Ei )t

Overlaps picked to have approximately same contamination from excited states
Bands are extracted spectrum/overlaps (= Ei ), with excited state systematics
Systematics estimated from difference between 4- and 5-operator GEVP basis
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Correlation Function Reconstruction
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PRELIMINARY

aµ =
∑

t wtC(t)

GEVP results to reconstruct long-distance behavior of
local vector correlation function needed to compute connected HVP

Explicit reconstruction good estimate of correlation function at long-distance,
missing excited states at short-distance

More states =⇒ better reconstruction, can replace C(t) at shorter distances
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Improved Bounding Method

Use known results in spectrum to make a precise estimate of
upper & lower bound on aHVP

µ

C̃(t; tmax,E) =

{
C(t) t < tmax

C(tmax)e−E(t−tmax) t ≥ tmax

Upper bound: E = E0, lowest state in spectrum

Lower bound: E = log[ C(tmax)
C(tmax+1) ]

Good control over lower states in spectrum with exclusive reconstruction:

Replace C(t)→ C(t)−
∑N

n |cn|2e−Ent

=⇒ Long distance convergence now ∝ e−EN+1t

=⇒ Smaller overall contribution from neglected states

Add back contribution from reconstruction after bounding correlator
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Bounding Method
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(See talk by C. Lehner)
PRELIMINARY

No bounding method: aHVP
µ = 577(31)

Bounding method tmax = 2.1 fm, no reconstruction: aHVP
µ = 566.8(9.0)

Bounding method tmax = 1.7 fm, 1 state reconstruction: aHVP
µ = 561.5(4.5)

Bounding method tmax = 1.6 fm, 2 state reconstruction: aHVP
µ = 559.5(3.8)

Very large lattice spacing: a−1 = 1.015 GeV, finite volume effects
Could expect 10− 20% systematic errors
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Outlook and Conclusions
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Summary

I g − 2 is an interesting and exciting topic to work on!
I Tensions in experimental ee → ππ data make independent study

of exclusive channels valuable

I Lattice QCD is a first principles method capable of
accessing necessary matrix elements

I Additional studies using correlated fits, additional ensembles in progress
I Study of exclusive channels able to significantly reduce

statistical uncertainty on an all-lattice computation of muon HVP
=⇒ expect lattice-only calculation with precision

comparable to R-ratio by 2020
I Part of ongoing lattice study to address all lattice systematics

in HVP computation
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Thanks

Computing time support from many sources:
I ANL
I BNL
I Oak Forest
I Hokusai
I USQCD
I XSEDE

Lots of data to analyze, lots of work ahead of us!

Thank you for your attention!
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Backup
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Error Budget

[Blum et al., (2018)]

Full program of computations to reduce uncertainties:

Reduce statistical uncertainties on light connected contribution

Compute QED contribution

Improve lattice spacing determination

Finite volume and continuum extrapolation study
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Distillation Smearing Visualization
Free-field Laplacian in 2-dimensions, 242 volume
More evecs, better ability to localize
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