

PDFs in small boxes

Juan Guerrero Hampton University & Jefferson Lab

Lattice Conference 2018 July, 2018

Based on: Briceño, JG, Hansen & Monahan, arXiv: 1805.01034 (accepted in PRD)

Novel idea: PDFs on the lattice

PDFs from QCD: lattice QCD is the only non-perturbative tool for QCD.

- Lattice QCD is defined by...
- O Discretization
- Euclidean vs Minkowski
- Quark masses
- Finite volume

Novel idea: PDFs on the lattice

PDFs from QCD: lattice QCD is the only non-perturbative tool for QCD.

- Lattice QCD is defined by...
- O Discretization
- Euclidean vs Minkowski
- Quark masses

• Finite volume

Focus of this talk...

$$t_M \rightarrow -it_E$$

Scheme to extract PDFs from the lattice

PDFs on the lattice evaluation of matrix elements of non-local operators $\langle N | \mathcal{O} | N \rangle$ There are different techniques: \circ Wilson lines: $\langle N | \bar{q} W q | N \rangle_{\infty}$ Ji (2013), Radyushkin (2017)

• two current operators: $\langle N | \mathcal{J}(0, \boldsymbol{\xi}) \mathcal{J}(0) | N \rangle_{\infty}$

Ma & Qiu (2018), Braun et al. (2008, 2018)

Lattice QCD

 $\langle N | \bar{q} W q | N \rangle_V$

 $\langle N | \mathcal{J}(0, \boldsymbol{\xi}) \mathcal{J}(0) | N \rangle_V$

Scheme to extract PDFs from the lattice

• two current operators:
$$\langle N | \mathcal{J}(0, \boldsymbol{\xi}) \mathcal{J}(0) | N \rangle_{\infty}$$

Ma & Qiu (2018), Braun et al. (2008, 2018)

Lattice QCD $\langle N | \bar{q} W q | N \rangle_V$

 $\langle N | \mathcal{J}(0, \boldsymbol{\xi}) \mathcal{J}(0) | N \rangle_V$

Pheno QCD $\langle N | \bar{q} W q | N \rangle_{\infty}$ $\langle N | \mathcal{J}(0, \boldsymbol{\xi}) \mathcal{J}(0) | N \rangle_{\infty}$

Finite volume: Infrared limit of the theory

• Finite-volume artifacts arise from the interactions with mirror images

• Assuming L >> size of the hadrons ~ $1/m_{\pi}$

- This is a purely infrared artifact
- We can determine these artifact using hadrons as d.o.f.

Finite volume: Infrared limit of the theory

Finite-volume artifacts arise from the interactions with mirror images

Assuming *L* >> size of the hadrons ~ $1/m_{\pi}$

This is a purely infrared artifact 0

• We can determine these artifact using hadrons as d.o.f.

Lüscher (1985)

Finite volume effects: Matrix elements

- In general, the masses and matrix elements of stable particles have been observed to have these exponentially suppressed corrections.
- Matrix elements of non-local currents suffer from larger FV effects:

 $\langle N | \mathcal{J}(0, \boldsymbol{\xi}) \mathcal{J}(0) | N \rangle_{\infty}$: generally decays as a function of $\boldsymbol{\xi}$

 $\langle N | \mathcal{J}(0, \boldsymbol{\xi}) \mathcal{J}(0) | N \rangle_V$: periodic, since $\mathcal{J}(t, \mathbf{x}) = \mathcal{J}(t, \mathbf{x} + L\mathbf{e}_i)$

Expect enhanced finite volume effects to keep periodicity!

Finite volume effects: Matrix elements

Expect enhanced finite volume effects to keep periodicity!

A simple example: mass of a pion

Consider a toy model for mesons

Bare propagator is volume-independent:

----- =
$$\Delta_0(p^2) = \frac{i}{p^2 - m_0^2 + i\epsilon}$$

O In a finite volume, integrals over momenta become sums:

$$\mathbf{1D:} \int \frac{dk_i}{2\pi} \to \sum_{k_i} \frac{\Delta k_i}{2\pi} = \sum_{k_i} \frac{2\pi\Delta n}{2\pi L} = \frac{1}{L} \sum_{k_i} \quad \mathbf{3D:} \int \frac{d^3k}{(2\pi)^3} \to \frac{1}{L^3} \sum_{k_i}$$

A simple example: self-energy of a pion

In infinite volume: $I_{\infty} = \int \frac{d^4k}{(2\pi)^4} \frac{1}{k^2 + m_{\pi}^2}$ In finite volume: $I_{\rm FV} = \frac{1}{L^3} \sum_{\mathbf{k}} \int \frac{dk_4}{2\pi} \frac{1}{k^2 + m_{\pi}^2} = \sum_{\mathbf{n}} \int \frac{d^4k}{(2\pi)^4} \frac{e^{i\mathbf{k}\cdot\mathbf{n}L}}{k^2 + m_{\pi}^2}$

Finite/infinite volume difference: $\delta m^2(L) \sim \delta I_{\rm FV} = I_{\rm FV} - I_{\infty}$

$$=\sum_{\mathbf{n}\neq 0}\int \frac{d^4k}{(2\pi)^4} \frac{e^{i\mathbf{k}\cdot\mathbf{n}L}}{k^2+m_\pi^2}$$

$$\sim K_1(Lm) \sim \frac{e^{-Lm}}{(Lm)^{3/2}}$$

A simple example: self-energy of a pion

juanvg@jlab.org

Lattice 2018, July 2018

Our toy model

Consider a theory with two scalar particles

- \circ a light one, φ , analogous to the pion
- \circ a heavy one, χ , analogous to the nucleon
- momentum independent coupling

Coupling to an external current :

Finite volume correction: $\delta \mathcal{M}_L^{(\text{LO})}(\boldsymbol{\xi}, \mathbf{p}) = g_{\varphi}^2 \sum_{\mathbf{n}\neq 0} \int_{q_E} \frac{e^{i\mathbf{q}\cdot(\boldsymbol{\xi}+iL\mathbf{n})}}{(p_E + q_E)^2 + m_{\varphi}^2}$

$$\delta \mathcal{M}_{L}^{(\mathrm{LO})}(\boldsymbol{\xi}, \mathbf{p}) = \frac{m_{\varphi} g_{\varphi}^{2}}{4\pi^{2}} e^{-i\mathbf{p}\cdot\boldsymbol{\xi}} \sum_{\mathbf{n}\neq 0} \frac{K_{1} \left(m_{\varphi} |\boldsymbol{\xi} + L\mathbf{n}|\right)}{|\boldsymbol{\xi} + L\mathbf{n}|} \sim \frac{m_{\varphi} g_{\varphi}^{2}}{4\pi^{2}} \frac{K_{1} \left(m_{\varphi} |L - \boldsymbol{\xi}|\right)}{|L - \boldsymbol{\xi}|}$$

$$\delta \mathcal{M}_L^{(\mathrm{LO})}(\boldsymbol{\xi}, \mathbf{p}) \propto rac{e^{-m_{\varphi}(L-\xi)}}{(L-\xi)^{3/2}}$$

Lattice 2018, July 2018

100% systematic uncertainty! inaccurate...despite it being arbitrarily precise!

Heavy external states

Leading order

$$\delta \mathcal{M}_L^{(\mathrm{LO})}(\boldsymbol{\xi}, \mathbf{p}) \propto \frac{e^{-m_{\chi}(L-\xi)}}{(L-\xi)^{3/2}} \ll e^{-m_{\varphi}(L-\xi)}$$

Next to Leading Order

In general...

We find that in general the matrix elements...

 $\langle M | \mathcal{J}(0,\boldsymbol{\xi}) \mathcal{J}(0) | M \rangle_{L} - \langle M | \mathcal{J}(0,\boldsymbol{\xi}) \mathcal{J}(0) | M \rangle_{\infty} = P_{a}(\boldsymbol{\xi},L) e^{-M(L-\boldsymbol{\xi})} + P_{b}(\boldsymbol{\xi},L) e^{-m_{\pi}L} + \cdots,$ Polynomial prefactors $\propto L^{m} / |L - \boldsymbol{\xi}|^{n}$

This result might be universal and have a better convergence than the EFT used, but we don't have a proof yet...

Implication for ongoing studies

parametrizes size of standard finite-volume errors

	Ref.	N_{f}	$m_{\pi}({ m MeV})$	L(fm)	$z_{\rm max}({ m fm})$	$m_{\pi}L$	$m_{\pi}(L-\xi_{\max})$
LP^3 nucleons	1807.07431	2+1+1	135	5.8	1.8	4	2.7
LP^3 nucleons	1803.04393	2+1+1	135	5.8	1.8	4	2.7
LP^3 mesons	1804.01483	2+1+1	310	2.9	1.8	4.6	1.7
ETMC	1807.00232	2	130	4.5	1.9	3	1.7
ETMC	1803.02685	2	130	4.5	1.9	3	1.7
Bali et al.	1807.06671	2	295	2.3	0.39	3.4	2.9
Bali et al.	1709.04325	2	295	2.3	0.39	3.4	2.9
JLab	1706.05373	0	600	3.0	1.2	9.1	5.4

Implication for ongoing studies

parametrizes size of standard finite-volume errors new scale encoding errors for operators with finite size

	Ref.	N_{f}	$m_{\pi}(\text{MeV})$	L(fm)	$z_{\rm max}({ m fm})$	$m_{\pi}L$	$m_{\pi}(L-\xi_{\max})$
LP^3 nucleons	1807.07431	2+1+1	135	5.8	1.8	4	2.7
LP^3 nucleons	1803.04393	2 + 1 + 1	135	5.8	1.8	4	2.7
LP^3 mesons	1804.01483	2 + 1 + 1	310	2.9	1.8	4.6	1.7
ETMC	1807.00232	2	130	4.5	1.9	3	1.7
ETMC	1803.02685	2	130	4.5	1.9	3	1.7
Bali et al.	1807.06671	2	295	2.3	0.39	3.4	2.9
Bali et al.	1709.04325	2	295	2.3	0.39	3.4	2.9
JLab	1706.05373	0	600	3.0	1.2	9.1	5.4

Implication for ongoing studies

			s	parame tandard fin	trizes size of ite-volume erro	rs)	new scale encoding errors for operators with finite size	
	Ref.	N_f	$ m_{\pi}(\text{MeV}) $	L(fm)	$z_{\rm max}({\rm fm})$	$m_{\pi}L$	$m_{\pi}(L-\xi_{\max})$	
LP^3 nucleons	1807.07431	2+1+1	135	5.8	1.8	4	2.7	
LP^3 nucleons	1803.04393	2+1+1	135	5.8	1.8	4	2.7	
LP^3 mesons	1804.01483	2+1+1	310	2.9	1.8	4.6	1.7	
ETMC	1807.00232	2	130	4.5	1.9	3	1.7	
ETMC	1803.02685	2	130	4.5	1.9	3	1.7	
Bali et al.	1807.06671	2	295	2.3	0.39	3.4	2.9	
Bali et al.	1709.04325	2	295	2.3	0.39	3.4	2.9	
JLab	1706.05373	0	600	3.0	1.2	9.1	5.4	

"finite-volume effects might be the largest underestimated systematic uncertainty..."

Summary

•First study of finite-volume artifacts in matrix elements of spatially non-local operators

▶ Finite volume artifacts estimated via toy model with two scalar particles

•We considered a toy model involving two scalar particles to estimate the size of finite-volume corrections.

▶ lightest particle: LO contribution dominant, effects ~ $P(\xi, L)e^{-m_{\pi}(L-\xi)}$

▶ heaviest particle: NLO contribution dominant, effects ~ $P(\xi, L)e^{-m_{\pi}L}$

Thank you!

Backup slides

Finite volume effects: Matrix elements

Wilson line is not periodic:

 $W[x + \xi \mathbf{e}_i, x] \equiv U_i(x + (\xi - a)\mathbf{e}_i) U_i(x + (\xi - 2a)\mathbf{e}_i) \times \dots \times U_i(x + a\mathbf{e}_i)$

Quark bilinears connected to Wilson Lines:

$$\overline{q}\left(x + (\xi + nL)\mathbf{e}_i\right)W\left[x + (\xi + nL)\mathbf{e}_i, x\right]q(x) = \overline{q}(x + \xi\mathbf{e}_i)W[x + \xi\mathbf{e}_i, x]\left(W[x + L\mathbf{e}_i, x]^n\right)q(x)$$

are no periodic. However,

q(x) and U(x) feel boundary conditions expect enhanced finite volume effects for large ξ

Asymptotic behaviors

$$\begin{split} \delta\mathcal{M}_{L}^{(b)}(\boldsymbol{\xi},\mathbf{0}) &= g^{2}g_{\varphi}g_{\chi}\sum_{\{\mathbf{n},\mathbf{m}\}\neq\mathbf{0}}\left[\int_{0}^{1}\mathrm{d}x\,\mathcal{I}_{2}\big[|L\mathbf{n}-\boldsymbol{\xi}|;M(x)\big]\right] \left[\int_{0}^{1}\mathrm{d}y\,\mathcal{I}_{2}\big[|L\mathbf{m}-\boldsymbol{\xi}|;M(y)\big]\right],\\ \delta\mathcal{M}_{L}^{(c)}(\boldsymbol{\xi},\mathbf{0}) &= 2g^{2}g_{\chi}^{2}\sum_{\{\mathbf{n},\mathbf{m}\}\neq\mathbf{0}}\mathcal{I}_{1}\big[|L\mathbf{n}-\boldsymbol{\xi}|;m_{\chi}\big] \left[\int_{0}^{1}\mathrm{d}x\,(1-x)\,\mathcal{I}_{3}\big[|L\mathbf{m}-\boldsymbol{\xi}|;M(x)\big]\right],\\ \delta\mathcal{M}_{L}^{(d)}(\boldsymbol{\xi},\mathbf{0}) &= g_{\chi\varphi}^{2}\sum_{\{\mathbf{n},\mathbf{m}\}\neq\mathbf{0}}\mathcal{I}_{1}\big[|L\mathbf{n}-\boldsymbol{\xi}|;m_{\chi}\big]\,\mathcal{I}_{1}\big[|L\mathbf{m}-\boldsymbol{\xi}|;m_{\varphi}\big],\\ \delta\mathcal{M}_{L}^{(e)}(\boldsymbol{\xi},\mathbf{0}) &= gg_{\varphi}g_{\chi\varphi}\sum_{\{\mathbf{n},\mathbf{m}\}\neq\mathbf{0}}\mathcal{I}_{1}\big[|L\mathbf{n}-\boldsymbol{\xi}|;m_{\varphi}\big] \left[\int_{0}^{1}\mathrm{d}x\,\mathcal{I}_{2}\big[|L\mathbf{m}-\boldsymbol{\xi}|;M(x)\big]\big],\\ \delta\mathcal{M}_{L}^{(f)}(\boldsymbol{\xi},\mathbf{0}) &= gg_{\chi}g_{\chi\varphi}\sum_{\{\mathbf{n},\mathbf{m}\}\neq\mathbf{0}}\mathcal{I}_{1}\big[|L\mathbf{n}-\boldsymbol{\xi}|;m_{\chi}\big] \left[\int_{0}^{1}\mathrm{d}x\,\mathcal{I}_{2}\big[|L\mathbf{m}-\boldsymbol{\xi}|;M(x)\big]\big],\\ \delta\mathcal{M}_{L}^{(g)}(\boldsymbol{\xi},\mathbf{0}) &= gg_{\chi\varphi}g_{\chi}\sum_{\{\mathbf{n},\mathbf{m}\}\neq\mathbf{0}}\mathcal{I}_{1}\big[|L\mathbf{n}-\boldsymbol{\xi}|;m_{\chi}\big] \left[\int_{0}^{1}\mathrm{d}x\,\mathcal{I}_{2}\big[|L\mathbf{m}|;M(x)\big]\right],\\ \delta\mathcal{M}_{L}^{(h)}(\boldsymbol{\xi},\mathbf{0}) &= \frac{1}{2}g_{\chi}g_{\chi\varphi\varphi}\sum_{\{\mathbf{n},\mathbf{m}\}\neq\mathbf{0}}\mathcal{I}_{1}\big[|L\mathbf{n}-\boldsymbol{\xi}|;m_{\chi}\big]\,\mathcal{I}_{1}\big[|L\mathbf{m}|;m_{\varphi}\big]. \end{split}$$

Asymptotic behaviors

$$\begin{split} \delta\mathcal{M}_{L}^{(a)}(\boldsymbol{\xi},\boldsymbol{0}) &\sim \frac{g^{2}g_{\varphi}^{2}}{128\pi^{3}m_{\varphi}} \bigg[\frac{\xi^{1/2}}{(L-\xi)^{3/2}} H_{x,3/2}(\boldsymbol{\xi}) + \frac{(L-\xi)^{1/2}}{\xi^{3/2}} H_{x,3/2}(L-\xi) \bigg] e^{-m_{\varphi}L} \,, \\ \delta\mathcal{M}_{L}^{(b)}(\boldsymbol{\xi},\boldsymbol{0}) &\sim \frac{g^{2}g_{\varphi}g_{\chi}}{64\pi^{3}m_{\varphi}} \bigg[\frac{1}{\xi^{1/2}(L-\xi)^{1/2}} H_{1,1/2}(\boldsymbol{\xi}) H_{1,1/2}(L-\xi) \bigg] e^{-m_{\varphi}L} \,, \\ \delta\mathcal{M}_{L}^{(c)}(\boldsymbol{\xi},\boldsymbol{0}) &= \frac{g^{2}g_{\chi}^{2}}{128\pi^{3}} \frac{m_{\chi}^{1/2}}{m_{\varphi}^{3/2}} \bigg[\frac{(L-\xi)^{1/2}}{\xi^{3/2}} H_{1-x,3/2}(L-\xi) \bigg] e^{-\xi(m_{\chi}-m_{\varphi})} e^{-m_{\varphi}L} \,, \\ \delta\mathcal{M}_{L}^{(d)}(\boldsymbol{\xi},\boldsymbol{0}) &= \frac{g^{2}g_{\chi}gm_{\chi}^{1/2}m_{\varphi}^{1/2}}{32\pi^{3}} \bigg[\frac{1}{\xi^{3/2}(L-\xi)^{3/2}} \bigg] e^{-\xi(m_{\chi}-m_{\varphi})} e^{-m_{\varphi}L} \,, \\ \delta\mathcal{M}_{L}^{(e)}(\boldsymbol{\xi},\boldsymbol{0}) &= \frac{gg_{\varphi}g_{\chi\varphi}}{64\pi^{3}} \bigg[\frac{1}{\xi^{1/2}(L-\xi)^{3/2}} H_{1,1/2}(\boldsymbol{\xi}) + \frac{1}{\xi^{3/2}(L-\xi)^{1/2}} H_{1,1/2}(L-\xi) \bigg] e^{-m_{\varphi}L} \,, \\ \delta\mathcal{M}_{L}^{(f)}(\boldsymbol{\xi},\boldsymbol{0}) &= \frac{gg_{\chi}g_{\chi\varphi}m_{\chi}^{1/2}}{64\pi^{3}m_{\varphi}^{1/2}} \bigg[\frac{1}{\xi^{3/2}(L-\xi)^{1/2}} H_{1,1/2}(L-\xi) \bigg] e^{-\xi(m_{\chi}-m_{\varphi})} e^{-m_{\varphi}L} \,, \\ \delta\mathcal{M}_{L}^{(g)}(\boldsymbol{\xi},\boldsymbol{0}) &= \frac{gg_{\chi}g_{\chi\varphi}m_{\chi}^{1/2}}{64\pi^{3}m_{\varphi}^{1/2}} \bigg[\frac{1}{\xi^{3/2}(L-\xi)^{1/2}} H_{1,1/2}(L-\xi) \bigg] e^{-\xi(m_{\chi}-m_{\varphi})} e^{-m_{\varphi}L} \,, \\ \delta\mathcal{M}_{L}^{(h)}(\boldsymbol{\xi},\boldsymbol{0}) &= \frac{gg_{\chi}g_{\chi}gm_{\chi}m_{\chi}^{1/2}}{64\pi^{3}m_{\varphi}^{1/2}} \bigg[\frac{1}{\xi^{3/2}(L-\xi)^{1/2}} H_{1,1/2}(L) \bigg] e^{-\xi(m_{\chi}-m_{\varphi})} e^{-m_{\varphi}L} \,, \\ \delta\mathcal{M}_{L}^{(h)}(\boldsymbol{\xi},\boldsymbol{0}) &= \frac{gg_{\chi}g_{\chi}gm_{\chi}m_{\chi}^{1/2}}{64\pi^{3}m_{\varphi}^{1/2}} \bigg[\frac{1}{\xi^{3/2}(L-\xi)^{1/2}} H_{1,1/2}(L) \bigg] e^{-\xi m_{\chi}} e^{-m_{\varphi}L} \,, \end{aligned}$$

juanvg@jlab.org

Heavy external states: Next to Leading Order

