Neutron Electric Dipole Moment from Beyond the Standard Model

Tanmoy Bhattacharya Boram Yoon Rajan Gupta Vincenzo Cirigliano

Los Alamos National Laboratory

July 23, 2018

Tanmoy Bhattacharya nEDM from BSM

Introduction

Lattice Calculation Two point functions Three point functions Future BSM Operators Effective Field Theory Form Factors

Introduction BSM Operators

Standard model CP violation in the weak sector. Strong CP violation from dimension 3 and 4 operators anomalously small.

- Dimension 3 and 4:
 - CP violating mass $\bar{\psi}\gamma_5\psi$.
 - Toplogical charge $G_{\mu\nu}\tilde{G}^{\mu\nu}$.
- Suppressed by $v_{\rm EW}/M_{\rm BSM}^2$:
 - Electric Dipole Moment $\bar{\psi}_{\Sigma_{\mu\nu}}\tilde{F}^{\mu\nu}_{\mu\nu}\psi$.
 - Chromo Dipole Moment $\bar{\psi} \Sigma_{\mu\nu} \tilde{G}^{\mu\nu} \psi$.
- Suppressed by $1/M_{\rm BSM}^2$:
 - Weinberg operator (Gluon chromo-electric moment): $G_{\mu\nu}G_{\lambda\nu}\tilde{G}_{\mu\lambda}.$
 - Various four-fermi operators.

Introduction

Lattice Calculation Two point functions Three point functions Future BSM Operators Effective Field Theory Form Factors

Introduction Effective Field Theory

Tanmoy Bhattacharya

Introduction

Lattice Calculation Two point functions Three point functions Future BSM Operators Effective Field Theory Form Factors

Introduction Form Factors

Vector form-factors Dirac F_1 , Pauli F_2 , Electric dipole F_3 , and Anapole F_A

Sachs electric $G_E \equiv F_1 - (q^2/4M^2)F_2$ and magnetic $G_M \equiv F_1 + F_2$

$$\begin{split} \langle N | V_{\mu}(q) | N \rangle &= \overline{u}_{N} \left[\gamma_{\mu} F_{1}(q^{2}) + i \frac{[\gamma_{\mu}, \gamma_{\nu}]}{2} q_{\nu} \frac{F_{2}(q^{2})}{2m_{N}} \right. \\ &+ \left(2i \, m_{N} \gamma_{5} q_{\mu} - \gamma_{\mu} \gamma_{5} q^{2} \right) \frac{F_{A}(q^{2})}{m_{N}^{2}} \\ &+ \frac{[\gamma_{\mu}, \gamma_{\nu}]}{2} q_{\nu} \gamma_{5} \frac{F_{3}(q^{2})}{2m_{N}} \right] u_{N} \end{split}$$

- The charge $G_E(0) = F_1(0) = 0$.
- $G_M(0)/2M_N=F_2(0)/2M_N$ is the (anomalous) magnetic dipole moment.
- $F_3(0)/2m_N$ is the electric dipole moment.
- F_A violates PT; F₃ violates CP.

Tanmoy Bhattacharya

Technique Three-point function

Lattice Calculation Technique

nEDM due to the quark EDM operator is given by the tensor charge, g_T .

See talk by Rajan Gupta. The quark chromo-EDM operator is a quark bilinear and can be handled by the Schwinger source method

$$D + m - \frac{r}{2}D^2 + c_{sw}\Sigma^{\mu\nu}G_{\mu\nu} \longrightarrow D + m - \frac{r}{2}D^2 + \Sigma^{\mu\nu}(c_{sw}G_{\mu\nu} + i\epsilon\tilde{G}_{\mu\nu})$$

The fermion determinant gives a 'reweighting factor'

$$\frac{\det(\not D + m - \frac{r}{2}D^2 + \Sigma^{\mu\nu}(c_{sw}G_{\mu\nu} + i\epsilon\tilde{G}_{\mu\nu})}{\det(\not D + m - \frac{r}{2}D^2 + c_{sw}\Sigma^{\mu\nu}G_{\mu\nu})} = \exp\operatorname{Tr}\ln\left[1 + i\epsilon\,\Sigma^{\mu\nu}\tilde{G}_{\mu\nu}(\not D + m - \frac{r}{2}D^2 + c_{sw}\Sigma^{\mu\nu}G_{\mu\nu})^{-1}\right] \approx \exp\left[i\epsilon\operatorname{Tr}\Sigma^{\mu\nu}\tilde{G}_{\mu\nu}(\not D + m - \frac{r}{2}D^2 + c_{sw}\Sigma^{\mu\nu}G_{\mu\nu})^{-1}\right].$$

Technique Three-point function

Lattice Calculation

The chromoEDM operator is dimension 5. Uncontrolled divergences unless $\epsilon \lesssim 4\pi a \Lambda_{\rm QCD} \sim 1$. Need to check linearity.

Tanmoy Bhattacharya

Ensembles Neutron Propagator Linearity O(a) effects

Two point functions Ensembles

Tests with Clover fermions on MILC 2+1+1 HISQ ensembles.

•
$$a = 0.1207(11)$$
 fm, $M_{\pi}^{\text{sea}} = 305.3(4)$ MeV,
 $M_{\pi}^{\text{val}} = 310.2(2.8)$ MeV,
 $L^3 \times T = 24^3 \times 64$, $\kappa \approx 0.1272103$, $c_{\text{SW}} = 1.05094$,
 $u_P^{HYP} = 0.9358574(29)$.
400 Configurations 64 LP + 8 HP calculations/configur

400 Configurations, 64 LP + 8 HP calculations/configuration.

Use two CP violating operators that mix under renormalization.

• CEDM: $a^2 \bar{\psi} \, \tilde{G} \cdot \Sigma \, \psi$

• P: $\bar{\psi}\gamma_5\psi$

Ensembles Neutron Propagator Linearity O(a) effects

Two point functions Neutron Propagator

Neutron operator

$$\epsilon_{abc} \left[\bar{d}^{aT} \gamma_0 \gamma_2 \gamma_5 \left(\frac{1 \pm \gamma_4}{2} \right) u^b \right] e^{i \alpha_N \gamma_5} d^c$$

- α_N chosen to make the asymptotic "free" fields have the standard parity
- α_N state dependent
- PT symmetry $\Rightarrow \alpha_N$ is real

Preliminary; Connected Diagrams Only

Tanmoy Bhattacharya

Ensembles Neutron Propagato Linearity O(a) effects

Two point functions Linearity

Preliminary; Connected Diagrams Only

Use $\epsilon \approx \frac{a}{30 \text{fm}} \approx 6.6 \text{MeV} a \approx 0.36 \text{ ma}$ for experiments.

Tanmoy Bhattacharya

Ensembles Neutron Propagator Linearity O(a) effects

Two point functions O(a) effects

 α is a Lorentz scalar, independent of momentum. On the lattice, see a momentum dependence.

Preliminary; Connected Diagrams Only

 $\begin{array}{l} \mbox{Projection} \\ F_3 \mbox{ Form factor from CEDM} \\ \mbox{Variance Reduction} \\ \mbox{nEDM from cEDM} \end{array}$

Three point functions Projection

The three point function we calculate is

$$N' \equiv \overline{d}^c \gamma_5 \frac{1 + \gamma_4}{2} u \ d = e^{-i\alpha_N \gamma_5} N$$

$$\langle \Omega | N'(\vec{0}, 0) V_\mu(\vec{q}, t) \overline{N'}(\vec{p}, T) | \Omega \rangle =$$

$$\sum_{n,n'} e^{-i\alpha_n \gamma_5} u_n e^{-m_n t} \ \langle n | V_\mu(q) | n' \rangle \ e^{-E_{n'}(T-t)} \overline{u}_{n'} e^{-i\alpha_{n'}^* \gamma_5}$$

We project onto only one spinor component with

$$\mathcal{P}=rac{1}{2}(1+\gamma_4)(1+i\gamma_5\gamma_3)$$

Tanmoy Bhattacharya nEDM from BSM

 $\begin{array}{l} \mbox{Projection} \\ F_3 \mbox{ Form factor from CEDM} \\ \mbox{Variance Reduction} \\ \mbox{nEDM from cEDM} \end{array}$

We isolate the matrix elements using the combination

$$\frac{C_{3\text{pt}}(q;\tau,t)}{C_{2\text{pt}}(\tau;0)} \sqrt{\frac{C_{2\text{pt}}(t;0)C_{2\text{pt}}(\tau;0)C_{2\text{pt}}(\tau-t;-q)}{C_{2\text{pt}}(t;-q)C_{2\text{pt}}(\tau;-q)C_{2\text{pt}}(\tau-t;0)}}$$

where

- $C_{\rm 3pt}$ are the projected 3pt functions
- $C_{\rm 2pt}$ are the real parts of projected 2pt functions One then has

$$F_{3} = -\frac{2m\sqrt{2E}}{\cos \alpha [q_{3}\sqrt{E+m}(q_{1}^{2}+q_{2}^{2})(E+m\cos 2\alpha)]} \times \left[\cos \alpha (E+m)^{2}(q_{1}\Re V_{1}+q_{2}\Re V_{2}) + q_{3}\sin \alpha [(E+m)(q_{2}\Re V_{1}-q_{1}\Re V_{2}) + (q_{1}^{2}+q_{2}^{2})\Re V_{4}]\right]$$

Projection F_3 Form factor from CEDM Variance Reduction nEDM from cEDM

Three point functions F_3 Form factor from CEDM

Preliminary; Connected Diagrams Only

Tanmoy Bhattacharya

 $\begin{array}{l} \mbox{Projection} \\ F_3 \mbox{ Form factor from CEDM} \\ \mbox{Variance Reduction} \\ \mbox{nEDM from cEDM} \end{array}$

Three point functions Variance Reduction

Many combinations are zero by continuum symmetries. For example,

$$z_{0} = cEDM(\epsilon = 0)$$
(1)

$$z_{1} = -(E - m)\Im V_{4} + q_{1}\Re V_{1} + q_{2}\Re V_{2} + q_{3}\Re V_{3}$$
(2)

$$z_{2} = \tan \alpha (q_{1}\Re V_{2} - q_{2}\Re V_{1}) - (E + m)\Re V_{3} - q_{3}\Im V_{4}$$
(3)

$$z_{3} = -(E - m)\Re V_{4} + q_{1}\Im V_{1} + q_{2}\Im V_{2} + q_{3}\Im V_{3}$$
(4)

$$z_{4} = q_{2}\Im V_{1} - q_{1}\Im V_{2}$$
(5)

$$z_{5} = q_{3}\Im V_{1} - q_{1}\Im V_{2}$$
(6)

 $\begin{array}{l} \mbox{Projection} \\ F_3 \mbox{ Form factor from CEDM} \\ \mbox{Variance Reduction} \\ \mbox{nEDM from cEDM} \end{array}$

But these may have non-zero correlations with F_3 . If σ_{FF}^2 and σ_{ii}^2 are the variances and σ_{Fi}^2 and σ_{ij}^2 are the covariances, then

$$F_3 - \sigma_{Fi}^2 (\sigma^{-2})_{ij} z_j$$

has lower variance.

Currently, showing results only with z_0 .

- For cEDM, the coefficient = 0.99
- For Pseudoscalar, the coefficient = 0.90

 $\begin{array}{l} \mbox{Projection} \\ F_3 \mbox{ Form factor from CEDM} \\ \mbox{Variance Reduction} \\ \mbox{nEDM from cEDM} \end{array}$

Preliminary; Connected Diagrams Only; Neutron

Tanmoy Bhattacharya nEDN

 $\begin{array}{l} \mbox{Projection} \\ F_3 \mbox{ Form factor from CEDM} \\ \mbox{Variance Reduction} \\ \mbox{nEDM from cEDM} \end{array}$

Three point functions nEDM from cEDM

Preliminary; Connected Diagrams Only

Tanmoy Bhattacharya nEDM from BSM

Next steps in progress Mixing with lower dimensional operators Weinberg Operator Machine learning

- Disconnected diagrams, fits, and extrapolations
- Mixing with lower dimensional operators
- Renormalization (gradient flow?)
- Weinberg operator
- Reduce variance

Next steps in progress Mixing with lower dimensional operators Weinberg Operator Machine learning

Future Mixing with lower dimensional operators

- cEDM mixes with $a^{-2}\bar\psi\gamma_5\psi$ even in a theory with chiral symmetry.
- Mixing structure different when chiral symmetry is broken, but no other operators.
- RI-sMOM scheme worked out, but complicated (More difficult if no chiral symmetry).
- In Gradient Flow scheme, smearing cEDM allows smooth $a \rightarrow 0$ limit at fixed physical smearing t.
- Continuum calculation mixes matrix elements of cEDM and $t^{-1}\bar{\psi}\gamma_5\psi$ to obtain cEDM in other schemes.

Next steps in progress Mixing with lower dimensional operators Weinberg Operator Machine learning

Future Weinberg Operator

Weinberg operator mixes with the Θ -term.

Large fluctuations from configuration to configuration.

Smearing reduces the ultraviolet fluctuations; scale dependence remains.

Tanmoy Bhattacharya

Next steps in progress Mixing with lower dimensional operators Weinberg Operator Machine learning

Variance reduction due to correlation between different observables: using different momentum channels to get further reductions.

Can also use the correlations to measure quantities: similar to reweighting or unraveling.

Predicting imaginary part from real part

Tanmoy Bhattacharya