π N P-wave

resonant scattering

 from lattice QCD
Srijit Paul

LATTICE 2018, Michigan, July 27, 2018

Summary of the $\pi-N$ spectrum

- Construction of relevant single and multihadron interpolating field operators, with the right quantum numbers.
[Discussed in previous talk]

Summary of the $\pi-N$ spectrum

- Construction of relevant single and multihadron interpolating field operators, with the right quantum numbers.
[Discussed in previous talk]
- Evaluating the Wick contractions involved in the calculation of 2-pt functions.
[$\pi \pi$ study, Alexandrou et.al.(20।7)]

Summary of the $\pi-N$ spectrum

- Construction of relevant single and multihadron interpolating field operators, with the right quantum numbers.
[Discussed in previous talk]
- Evaluating the Wick contractions involved in the calculation of 2-pt functions.
[$\pi \pi$ study, Alexandrou et.al.(20|7)]
- Projecting the interpolators into particular Irreps of the relevant Little group.

Summary of the $\pi-N$ spectrum

- Construction of relevant single and multihadron interpolating field operators, with the right quantum numbers.
[Discussed in previous talk]
- Evaluating the Wick contractions involved in the calculation of 2-pt functions.

$$
\text { [} \pi \pi \text { study, Alexandrou et.al.(20I7)] }
$$

- Projecting the interpolators into particular Irreps of the relevant Little group.
- Constructing the correlation matrices for each Irrep in all the relevant Little groups.

Summary of the $\pi-N$ spectrum

- Construction of relevant single and multihadron interpolating field operators, with the right quantum numbers.
[Discussed in previous talk]
- Evaluating the Wick contractions involved in the calculation of 2-pt functions.

$$
\text { [} \pi \pi \text { study, Alexandrou et.al.(20|7)] }
$$

- Projecting the interpolators into particular Irreps of the relevant Little group.
- Constructing the correlation matrices for each Irrep in all the relevant Little groups.
- Obtaining the GEVP spectra for all the Irreps.

Summary of the $\pi-N$ spectrum

- Construction of relevant single and multihadron interpolating field operators, with the right quantum numbers.
[Discussed in previous talk]
- Evaluating the Wick contractions involved in the calculation of 2-pt functions.

$$
\text { [} \pi \pi \text { study, Alexandrou et.al.(20|7)] }
$$

- Projecting the interpolators into particular Irreps of the relevant Little group.
- Constructing the correlation matrices for each Irrep in all the relevant Little groups.
- Obtaining the GEVP spectra for all the Irreps.
bullet size \propto data size

Summary of the $\pi-N$ spectrum

- Construction of relevant single and multihadron interpolating field operators, with the right quantum numbers.
[Discussed in previous talk]
- Evaluating the Wick contractions involved in the calculation of 2-pt functions.
[$\pi \pi$ study, Alexandrou et.al.(2017)]
- Projecting the interpolators into particular Irreps of the relevant Little group.
- Constructing the correlation matrices for each Irrep in all the relevant Little groups.
- Obtaining the GEVP spectra for all the Irreps.

N_{s}	N_{t}	β	$a m_{u, d}$	$a m_{s}$	$c_{s w}$	$a(f m)$	$L(f m)$	$m_{\pi}(\mathrm{MeV})$	$m_{\pi} L$
24	48	3.31	-0.0953	-0.040	1.0	0.116	2.8	254	3.6

BMW Ensemble, S. Dürr et al., JHEP I 108, I48 (2011)

Lüscher Methodology

$$
\operatorname{det}\left(\mathbb{1}+i t_{\ell}(s)\left(\mathbb{1}+i \mathcal{M}^{\vec{P}}\right)\right)=0
$$

where $t_{\ell}(s)=\frac{1}{\cot \delta_{\ell}(s)-i}$.
[Lüscher(1991)]

General Lüscher Methodology

$$
\operatorname{det}\left(\mathbb{1}+i t_{\ell}(s)\left(\mathbb{1}+i \mathcal{M}^{\overrightarrow{\mathcal{P}}}\right)\right)=0
$$

where $t_{\ell}(s)=\frac{1}{\cot \delta_{\ell}(s)-i}$.
[Lüscher(I99I)]

General Lüscher Methodology

$$
\operatorname{det}\left(\mathbb{1}+i t_{\ell}(s)\left(\mathbb{1}+i \mathcal{M}^{\overrightarrow{\mathcal{P}}}\right)\right)=0
$$

where $t_{\ell}(s)=\frac{1}{\cot \delta_{\ell}(s)-i}$.
[Lüscher(I99I)]
For Baryons

$$
\operatorname{det}\left(M_{J l \mu, J^{\prime} l^{\prime} \mu^{\prime}}-\delta_{J J^{\prime}} \delta_{l l^{\prime}} \delta_{\mu \mu^{\prime}} \cot \delta_{J l}\right)=0
$$

[Göckeler et.al.(20I2)]
In the above formula $M_{J l \mu, J^{\prime} l^{\prime} \mu^{\prime}}$ can be simplified by basis transformations as block diagonal by,

$$
\langle\Gamma \alpha J l n| \hat{M}\left|\Gamma^{\prime} \alpha^{\prime} J^{\prime} l^{\prime} n^{\prime}\right\rangle=\sum_{\mu \mu^{\prime}} c_{J l \mu}^{\Gamma \alpha n *} c_{J^{\prime} l^{\prime} \mu^{\prime}}^{\Gamma^{\prime} \alpha^{\prime}} M_{J l \mu, J^{\prime} l^{\prime} \mu^{\prime}}
$$

Example $M_{J l \mu, J^{\prime} l^{\prime} \mu^{\prime}}$ calculation: $C_{4 v}^{D}$

$$
\begin{array}{ll}
J=I / 2 & J=3 / 2 \\
\hline I=0, I & I=I, 2
\end{array}
$$

Example $M_{J l \mu, J^{\prime} l^{\prime} \mu^{\prime}}$ calculation: $C_{4 v}^{D}$

$$
\begin{array}{ll}
\mathrm{J}=\mathrm{I} / 2 & \mathrm{~J}=3 / 2 \\
\hline \mathrm{I}=0, \mathrm{I} & \mathrm{I}=\mathrm{I}, 2
\end{array}
$$

Example $M_{J l \mu, J^{\prime} l^{\prime} \mu^{\prime}}$ calculation: $C_{4 v}^{D}$

$$
\begin{array}{ll}
J=I / 2 & J=3 / 2 \\
\hline I=0, I & I=I, 2
\end{array}
$$

$$
\begin{aligned}
& \operatorname{det}\left(M_{J l \mu, J^{\prime} l^{\prime} \mu^{\prime}}^{G 1}-\delta_{J J^{\prime}} \delta_{l l^{\prime}} \delta_{\mu \mu^{\prime}} \cot \delta_{J l}^{G 1}\right)=0 \\
& \operatorname{det}\left(M_{J l \mu, J^{\prime} l^{\prime} \mu^{\prime}}^{G 2}-\delta_{J J^{\prime}} \delta_{l l^{\prime}} \delta_{\mu \mu^{\prime}} \cot \delta_{J l}^{G 2}\right)=0
\end{aligned}
$$

Example $M_{J l \mu, J^{\prime} l^{\prime} \mu^{\prime}}$ calculation: $C_{4 v}^{D}$

$$
\begin{array}{ll}
J=I / 2 & J=3 / 2 \\
\hline I=0, I & I=I, 2 \\
\hline
\end{array}
$$

$$
\operatorname{det}\left(M_{J l \mu, J l^{\prime} l^{\prime} \mu^{\prime}}^{G 2}-\delta_{J J^{\prime}} \delta_{l l^{\prime}} \delta_{\mu \mu^{\prime}} \cot \delta_{3 / 2,1}^{G 2}\right)=0
$$

Resonances

Narrow resonances in scattering are characterised by Breit Wigner

$$
t_{\ell}(s)=\frac{\sqrt{s} \Gamma(s)}{\left.\sqrt\left[{m_{R}^{2}-s-i \sqrt{s} \Gamma(s}\right)\right]{ }}
$$

$s=$ Square of Centre of Mass energy (Mandelstam s) $m_{R}=$ Mass of resonance
$\Gamma(s)=$ Decay-width of resonance

Resonances

Narrow resonances in scattering are characterised by Breit Wigner

$$
t_{\ell}(s)=\frac{\sqrt{s} \Gamma(s)}{\left.\sqrt\left[{m_{R}^{2}-s-i \sqrt{s} \Gamma(s}\right)\right]{ }}
$$

$s=$ Square of Centre of Mass energy (Mandelstam s)
$m_{R}=$ Mass of resonance
$\Gamma(s)=$ Decay-width of resonance
Decay Width form for Δ (1232).

$$
\Gamma_{E F T}^{L O}=\frac{g_{\Delta-\pi N}^{2}}{48 \pi} \frac{E_{N}+m_{N} \frac{p^{* 3}}{E_{N}+E_{\pi}} \frac{m_{N}^{2}}{m_{N}}}{\text { and }}
$$

[V. Pascalutsa and M. Vanderhaeghen, Phys.Rev. D73 ,034003 (2006)]
Used in lattice QCD for the first time by,
[Alexandrou, Negele, Petschlies, Strelchenko, Tsapalis , Phys.Rev. D88 (2013)]

Inverse Lüscher Formalism Methodology

$$
\operatorname{det}\left(\mathbb{1}+i t_{\ell}(s)\left(\mathbb{1}+i \mathcal{M}^{\overrightarrow{\mathcal{P}}}\right)\right)=0
$$

Inverse Lüscher Formalism Methodology

$$
\operatorname{det}\left(\mathbb{1}+i t_{\ell}(s)\left(\mathbb{1}+i \mathcal{M}^{\overrightarrow{\mathcal{P}}}\right)\right)=0
$$

- Calculated pion mass, nucleon mass on the lattice

$$
\begin{aligned}
m_{\pi} & =258.3(1.1) \mathrm{MeV} \\
m_{N} & =1066.4(2.7) \mathrm{MeV}
\end{aligned}
$$

Inverse Lüscher Formalism Methodology

$$
\operatorname{det}\left(\mathbb{1}+i t_{\ell}(s)\left(\mathbb{1}+i \mathcal{M}^{\overrightarrow{\mathcal{P}}}\right)\right)=0
$$

- Calculated pion mass, nucleon mass on the lattice

$$
\begin{aligned}
m_{\pi} & =258.3(1.1) \mathrm{MeV} \\
m_{N} & =1066.4(2.7) \mathrm{MeV}
\end{aligned}
$$

- Assume the m_{Δ}, Γ. (between the $\pi-N$ and $\pi \pi-N$ threshold.)

Inverse Lüscher Formalism Methodology

$$
\operatorname{det}\left(\mathbb{1}+i t_{\ell}(s)\left(\mathbb{1}+i \mathcal{M}^{\overrightarrow{\mathcal{P}}}\right)\right)=0
$$

- Calculated pion mass, nucleon mass on the lattice

$$
\begin{aligned}
m_{\pi} & =258.3(1.1) \mathrm{MeV} \\
m_{N} & =1066.4(2.7) \mathrm{MeV}
\end{aligned}
$$

- Assume the m_{Δ}, Γ. (between the $\pi-N$ and $\pi \pi-N$ threshold.)
- Select the Irrep containing $J=3 / 2$ in order to construct \mathcal{M}.

Inverse Lüscher Formalism Methodology

$$
\operatorname{det}\left(\mathbb{1}+i t_{\ell}(s)\left(\mathbb{1}+i \mathcal{M}^{\overrightarrow{\mathcal{P}}}\right)\right)=0
$$

- Calculated pion mass, nucleon mass on the lattice

$$
\begin{aligned}
m_{\pi} & =258.3(1.1) \mathrm{MeV} \\
m_{N} & =1066.4(2.7) \mathrm{MeV}
\end{aligned}
$$

- Assume the m_{Δ}, Γ. (between the $\pi-N$ and $\pi \pi-N$ threshold.)
- Select the Irrep containing $J=3 / 2$ in order to construct \mathcal{M}.
- Take t_{l} to be Breit Wigner distribution, for $l=1$, assuming there is a resonance in P-wave scattering.

Inverse Lüscher Formalism Methodology

$$
\operatorname{det}\left(\mathbb{1}+i t_{\ell}(s)\left(\mathbb{1}+i \mathcal{M}^{\overrightarrow{\mathcal{P}}}\right)\right)=0
$$

- Calculated pion mass, nucleon mass on the lattice

$$
\begin{aligned}
m_{\pi} & =258.3(1.1) \mathrm{MeV} \\
m_{N} & =1066.4(2.7) \mathrm{MeV}
\end{aligned}
$$

- Assume the m_{Δ}, Γ. (between the $\pi-N$ and $\pi \pi-N$ threshold.)
- Select the Irrep containing $J=3 / 2$ in order to construct \mathcal{M}.
- Take t_{l} to be Breit Wigner distribution, for $l=1$, assuming there is a resonance in P-wave scattering.
- Find the values of s for which the determinant condition is satisfied.

Lüscher Analysis v/s Inverse Lüscher

Lüscher Analysis v/s Inverse Lüscher

Lüscher Analysis v/s Inverse Lüscher

Lüscher Analysis v/s Inverse Lüscher

Lüscher Analysis v/s Inverse Lüscher

$$
|\vec{d}|=\frac{2 \pi}{L} \sqrt{2}, \Lambda=G
$$

χ^{2} with a model fit

χ^{2} with a model fit

$$
\chi^{2}=\sum_{\vec{P}, \Lambda, n} \sum_{\vec{P}^{\prime}, \Lambda^{\prime}, n^{\prime}}\left(\sqrt{s_{n}^{\left.\Lambda, \vec{P}^{[a v g}\right]}}-\sqrt{s_{n}^{\Lambda, \vec{P}^{[\text {model }]}}}\right)\left[C^{-1}\right]_{\vec{P}, \Lambda, n ; \vec{P}^{\prime}, \Lambda^{\prime}, n^{\prime}}
$$

m_{Δ}	1430 MeV	(94)
$g_{\Delta-\pi N}$	25.7	(4)

Phase Shift plot

J=3/2, P-wave Analysis

Contennporary results

Collab.	$m_{\pi}(\mathrm{MeV})$	Methodology	$m_{\Delta}(\mathrm{MeV})$	coupling
Verduci(20I4)	$266(3)$	(WC)Distillation, Lüscher	$1396(\mathrm{I9)}$	$19.9(83)$
Alexandrou et.al. (2013)	360	(DW)Michael, McNeile	-	$26.7(0.6)(1.4)$
Alexandrou et.al. (2015)	180	(DW)Michael, McNeile	-	$23.7(0.7)(1.1)$
Andersen et.al. (20I7)	280	(WC)Stoch. Distillation, Lüscher	$1344(20)$	$37.1(9.2)$
Our result(Preliminary)	$258.3(1.1)$	(WC)Src-smear, Lüscher	$1430(94)$	$25.7(4)$
Physical Value	$139.57018(35)$	phen., K-matrix	$1232(1)$	$29.4(3), 28.6(3)$

Contemporary results

Collab.	$m_{\pi}(\mathrm{MeV})$	Methodology	$m_{\Delta}(\mathrm{MeV})$	coupling
Verduci(20I4)	$266(3)$	(WC)Distillation, Lüscher	$1396(\mathrm{I9)}$	$19.9(83)$
Alexandrou et.al. (2013)	360	(DW)Michael, McNeile	-	$26.7(0.6)(1.4)$
Alexandrou et.al. (2015)	180	(DW)Michael, McNeile	-	$23.7(0.7)(1.1)$
Andersen et.al. (20I7)	280	(WC)Stoch. Distillation, Lüscher	$1344(20)$	$37.1(9.2)$
Our result(Preliminary)	$258.3(1.1)$	(WC)Src-smear, Lüscher	$1430(94)$	$25.7(4)$
Physical Value	$139.57018(35)$	phen., K-matrix	$1232(1)$	$29.4(3), 28.6(3)$

We differ from the above calculations, in terms of analysis methods, in the following ways:

- Tuned Smearing parameters,

$$
\begin{aligned}
& W\left[U_{2-H E X}\right] D^{-1} W\left[U_{2-H E X}\right]^{\dagger} \\
& \left(N, \alpha_{W U P}\right)=(45,3.0)
\end{aligned}
$$

- We use direct t-matrix fits, for estimating the resonance parameters.

Outlook

- We have done the calculation on only I/3rd of total configurations available.

Outlook

- We have done the calculation on only I/3rd of total configurations available.
- We have another volume $\left(32^{3} \times 48\right)$ available with the same pion mass and lattice constant, which would help to sample the phase shift curve more precisely.

Outlook

- We have done the calculation on only I/3rd of total configurations available.
- We have another volume $\left(32^{3} \times 48\right)$ available with the same pion mass and lattice constant, which would help to sample the phase shift curve more precisely.
- With the application of t-matrix fits, we can deal with non-resonant contributions from other J 's and l 's.

Outlook

- We have done the calculation on only I/3rd of total configurations available.
- We have another volume $\left(32^{3} \times 48\right)$ available with the same pion mass and lattice constant, which would help to sample the phase shift curve more precisely.
- With the application of t-matrix fits, we can deal with non-resonant contributions from other J 's and l 's.
- Only one Breit Wigner model was taken into account, more models need to be taken with more data.

Collaborators

```
Constantia Alexandrou (University of Cyprus / The Cyprus Institute)
Stefan Krieg (Forschungszentrum Jülich / University of Wuppertal)
Giannis Koutsou (The Cyprus Institute)
Luka Leskovec (University of Arizona)
Stefan Meinel (University of Arizona / RIKEN BNL Research Center)
John Negele (MIT)
Marcus Petschlies (University of Bonn / Bethe Center for Theoretical Physics)
Andrew Pochinsky (MIT)
Gumaro Rendon (University of Arizona)
Giorgio Silvi (Forschungszentrum Jülich / University of Wuppertal)
Sergey Syritsyn (Stony Brook University / RIKEN BNL Research Center)
```

