πN P-wave resonant scattering from lattice QCD

Srijit Paul

LATTICE 2018, Michigan, July 27, 2018

• Construction of relevant single and multihadron interpolating field operators, with the right quantum numbers.

[Discussed in previous talk]

• Construction of relevant single and multihadron interpolating field operators, with the right quantum numbers.

[Discussed in previous talk]

 Evaluating the Wick contractions involved in the calculation of 2-pt functions.

[$\pi\pi$ study, Alexandrou et.al.(2017)]

• Construction of relevant single and multihadron interpolating field operators, with the right quantum numbers.

[Discussed in previous talk]

• Evaluating the Wick contractions involved in the calculation of 2-pt functions.

[$\pi\pi$ study, Alexandrou et.al.(2017)]

• Projecting the interpolators into particular Irreps of the relevant Little group.

• Construction of relevant single and multihadron interpolating field operators, with the right quantum numbers.

[Discussed in previous talk]

• Evaluating the Wick contractions involved in the calculation of 2-pt functions.

[$\pi\pi$ study, Alexandrou et.al.(2017)]

- Projecting the interpolators into particular Irreps of the relevant Little group.
- Constructing the correlation matrices for each Irrep in all the relevant Little groups.

• Construction of relevant single and multihadron interpolating field operators, with the right quantum numbers.

[Discussed in previous talk]

• Evaluating the Wick contractions involved in the calculation of 2-pt functions.

[$\pi\pi$ study, Alexandrou et.al.(2017)]

- Projecting the interpolators into particular Irreps of the relevant Little group.
- Constructing the correlation matrices for each Irrep in all the relevant Little groups.
 - [•] Obtaining the GEVP spectra for all the Irreps.

• Construction of relevant single and multihadron interpolating field operators, with the right quantum numbers.

[Discussed in previous talk]

• Evaluating the Wick contractions involved in the calculation of 2-pt functions.

[$\pi\pi$ study, Alexandrou et.al.(2017)]

- Projecting the interpolators into particular Irreps of the relevant Little group.
- Constructing the correlation matrices for each Irrep in all the relevant Little groups.
 - Obtaining the GEVP spectra for all the Irreps.

bullet size \propto data size

• Construction of relevant single and multihadron interpolating field operators, with the right quantum numbers.

[Discussed in previous talk]

• Evaluating the Wick contractions involved in the calculation of 2-pt functions.

[$\pi\pi$ study, Alexandrou et.al.(2017)]

- Projecting the interpolators into particular Irreps of the relevant Little group.
- Constructing the correlation matrices for each Irrep in all the relevant Little groups.
 - [•] Obtaining the GEVP spectra for all the Irreps.

bullet size \propto data size

Ns	N t	β	am _{u,d}	am _s	C _{SW}	a(fm)	L(fm)	$m_{\pi}(MeV)$	$m_{\pi}L$
24	48	3.31	-0.0953	-0.040	1.0	0.116	2.8	254	3.6

BMW Ensemble, S. Dürr et al., JHEP 1108, 148 (2011)

Lüscher Methodology

$$\det\biggl(\mathbbm{1}+it_\ell(s)(\mathbbm{1}+i\mathcal{M}^{\vec{P}})\biggr)=0,$$
 where $t_\ell(s)=\frac{1}{\cot\delta_\ell(s)-i}.$

[Lüscher(1991)]

General Lüscher Methodology

$$\det\left(\mathbbm{1} + i \underline{t_{\ell}(s)}(\mathbbm{1} + i \mathcal{M}^{\vec{\mathcal{P}}})\right) = 0,$$

where $t_{\ell}(s) = \frac{1}{\cot \delta_{\ell}(s) - i}$.

[Lüscher(1991)]

/14

General Lüscher Methodology

$$\det\left(\mathbbm{1} + i \underline{t_{\ell}(s)} \,(\mathbbm{1} + i \underline{\mathcal{M}^{\vec{\mathcal{P}}}})\right) = 0,$$
 where $t_{\ell}(s) = \frac{1}{\cot \left(\delta_{\ell}(s) - i\right)}$.

[Lüscher(1991)]

For Baryons

$$\det(M_{Jl\mu,J'l'\mu'} - \delta_{JJ'}\delta_{ll'}\delta_{\mu\mu'}\cot\delta_{Jl}) = 0$$
[Göckeler et.al.(2012)]

In the above formula $M_{Jl\mu,J'l'\mu'}$ can be simplified by basis transformations as block diagonal by,

$$\langle \Gamma \alpha J ln | \hat{M} | \Gamma' \alpha' J' l' n' \rangle = \sum_{\mu \mu'} c_{J l \mu}^{\Gamma \alpha n *} c_{J' l' \mu'}^{\Gamma' \alpha' n'} M_{J l \mu, J' l' \mu'}$$

Example $M_{Jl\mu,J'l'\mu'}$ calculation: C_{4v}^D

$$\frac{J = 1/2}{I = 0, I} = \frac{J = 3/2}{I = 1, 2}$$

Example $M_{Jl\mu,J'l'\mu'}$ calculation: C_{4v}^D

$$\frac{J = 1/2 \quad J = 3/2}{I = 0, 1 \quad I = 1, 2}$$

$$M_{Jl\mu} \qquad M_{Jl\mu}^{C_{4v}}$$

$$M_{J'l'\mu'} \qquad 12 \times 12 \qquad \bigoplus \qquad G_{1(1/2,3/2,..)}^{G_{1(1/2,3/2,..)}} M_{J'l'\mu'}^{C_{4v}}$$

14

Example $M_{Jl\mu,J'l'\mu'}$ calculation: $\overline{C_{4v}^D}$

Resonances

Narrow resonances in scattering are characterised by Breit Wigner

$$t_{\ell}(s) = \frac{\sqrt{s}\,\Gamma(s)}{m_R^2 - s - i\,\sqrt{s}\,\Gamma(s)}$$

s = Square of Centre of Mass energy (Mandelstam s) $m_R =$ Mass of resonance $\Gamma(s) =$ Decay-width of resonance

Resonances

Narrow resonances in scattering are characterised by Breit Wigner

$$t_{\ell}(s) = \frac{\sqrt{s}\,\Gamma(s)}{m_R^2 - s - i\,\sqrt{s}\,\Gamma(s)}$$

s = Square of Centre of Mass energy (Mandelstam s) $m_R =$ Mass of resonance $\Gamma(s) =$ Decay-width of resonance Decay Width form for $\Delta(1232)$.

$$\Gamma_{EFT}^{LO} = \frac{g_{\Delta-\pi N}^2}{48\pi} \left[\frac{E_N + m_N}{E_N + E_\pi} \frac{p^{*3}}{m_N^2} \right]$$

[V. Pascalutsa and M. Vanderhaeghen, Phys.Rev. D73 ,034003 (2006)]

Used in lattice QCD for the first time by,

[Alexandrou, Negele, Petschlies, Strelchenko, Tsapalis , Phys.Rev. D88 (2013)]

$$\det\left(\mathbb{1}+i t_{\ell}(s) (\mathbb{1}+i \mathcal{M}^{\vec{\mathcal{P}}})\right) = 0,$$

14

$$\det\left(\mathbb{1}+i t_{\ell}(s)\left(\mathbb{1}+i \mathcal{M}^{\vec{\mathcal{P}}}\right)\right)=0,$$

$$m_{\pi} = 258.3(1.1) \,\mathrm{MeV}$$

$$m_N = 1066.4(2.7) \,\mathrm{MeV}$$

$$\det\left(\mathbb{1}+i t_{\ell}(s) \left(\mathbb{1}+i \mathcal{M}^{\vec{\mathcal{P}}}\right)\right)=0,$$

• Calculated pion mass, nucleon mass on the lattice

$$m_{\pi} = 258.3(1.1) \,\mathrm{MeV}$$

$$m_N = 1066.4(2.7)\,{\rm MeV}$$

• Assume the m_{Δ} , Γ . (between the π -N and $\pi\pi$ -N threshold.)

$$\det\left(\mathbb{1}+i t_{\ell}(s) \left(\mathbb{1}+i \mathcal{M}^{\vec{\mathcal{P}}}\right)\right)=0,$$

$$m_{\pi} = 258.3(1.1) \,\mathrm{MeV}$$

$$m_N = 1066.4(2.7) \,\mathrm{MeV}$$

- Assume the m_{Δ} , Γ . (between the π -N and $\pi\pi$ -N threshold.)
- Select the Irrep containing J = 3/2 in order to construct \mathcal{M} .

$$\det\left(\mathbb{1}+i t_{\ell}(s) \left(\mathbb{1}+i \mathcal{M}^{\vec{\mathcal{P}}}\right)\right)=0,$$

$$m_{\pi} = 258.3(1.1) \,\mathrm{MeV}$$

$$m_N = 1066.4(2.7) \,\mathrm{MeV}$$

- Assume the m_{Δ} , Γ . (between the π -N and $\pi\pi$ -N threshold.)
- Select the Irrep containing J = 3/2 in order to construct \mathcal{M} .
- Take t_l to be Breit Wigner distribution, for l = 1, assuming there is a resonance in *P*-wave scattering.

$$\det\left(\mathbb{1}+i t_{\ell}(s) \left(\mathbb{1}+i \mathcal{M}^{\vec{\mathcal{P}}}\right)\right)=0,$$

$$m_{\pi} = 258.3(1.1) \,\mathrm{MeV}$$

$$m_N = 1066.4(2.7) \,\mathrm{MeV}$$

- Assume the m_{Δ} , Γ . (between the π -N and $\pi\pi$ -N threshold.)
- Select the Irrep containing J = 3/2 in order to construct \mathcal{M} .
- Take t_l to be Breit Wigner distribution, for l = 1, assuming there is a resonance in *P*-wave scattering.
- Find the values of *s* for which the determinant condition is satisfied.

8/14

χ^2 with a model fit

$$\chi^{2} = \sum_{\vec{P},\Lambda,n} \sum_{\vec{P}',\Lambda',n'} \left(\sqrt{s_{n}^{\Lambda,\vec{P}}}^{[avg]} - \sqrt{s_{n}^{\Lambda,\vec{P}}}^{[model]} \right) [C^{-1}]_{\vec{P},\Lambda,n;\vec{P}',\Lambda',n'} \\ \left(\sqrt{s_{n'}^{\Lambda',\vec{P}'}}^{[avg]} - \sqrt{s_{n'}^{\Lambda',\vec{P}'}}^{[model]} \right),$$

χ^2 with a model fit

$$\chi^{2} = \sum_{\vec{P},\Lambda,n} \sum_{\vec{P}',\Lambda',n'} \left(\sqrt{s_{n}^{\Lambda,\vec{P}}}^{[avg]} - \sqrt{s_{n}^{\Lambda,\vec{P}}}^{[model]} \right) [C^{-1}]_{\vec{P},\Lambda,n;\vec{P}',\Lambda',n'} \\ \left(\sqrt{s_{n'}^{\Lambda',\vec{P}'}}^{[avg]} - \sqrt{s_{n'}^{\Lambda',\vec{P}'}}^{[model]} \right), \\ \frac{\overline{m_{\Delta}} \quad 1430 \text{ MeV} \quad (94)}{g_{\Delta-\pi N} \quad 25.7 \qquad (4)}$$

Phase Shift plot

14

J=3/2, P-wave Analysis

Contemporary results

Collab.	m_{π} (MeV)	Methodology	$m_{\Delta}({\rm MeV})$	coupling
Verduci(2014)	266(3)	(WC)Distillation, Lüscher	1396(19)	19.9(83)
Alexandrou et.al. (2013)	360	(DW)Michael, McNeile	-	26.7(0.6)(1.4)
Alexandrou et.al. (2015)	180	(DW)Michael, McNeile	-	23.7(0.7)(1.1)
Andersen et.al. (2017)	280	(WC)Stoch. Distillation, Lüscher	l 344(20)	37.1 (9.2)
Our result(Preliminary)	258.3(1.1)	(WC)Src-smear, Lüscher	1430(94)	25.7(4)
Physical Value	139.57018(35)	phen. , K-matrix	1232(1)	29.4(3), 28.6(3)

Contemporary results

Collab.	m_{π} (MeV)	Methodology	$m_{\Delta}({\rm MeV})$	coupling
Verduci(2014)	266(3)	(WC)Distillation, Lüscher	1396(19)	19.9(83)
Alexandrou et.al. (2013)	360	(DW)Michael, McNeile	-	26.7(0.6)(1.4)
Alexandrou et.al. (2015)	180	(DW)Michael, McNeile	-	23.7(0.7)(1.1)
Andersen et.al. (2017)	280	(WC)Stoch. Distillation, Lüscher	1344(20)	37.1 (9.2)
Our result(Preliminary)	258.3(1.1)	(WC)Src-smear, Lüscher	1430(94)	25.7(4)
Physical Value	139.57018(35)	phen. , K-matrix	1232(1)	29.4(3), 28.6(3)

We differ from the above calculations, in terms of analysis methods, in the following ways:

- Tuned Smearing parameters, $W[U_{2-HEX}] D^{-1} W[U_{2-HEX}]^{\dagger}$ $(N, \alpha_{WUP}) = (45, 3.0)$
- We use direct *t*-matrix fits, for estimating the resonance parameters.

• We have done the calculation on only 1/3rd of total configurations available.

- We have done the calculation on only 1/3rd of total configurations available.
- We have another volume $(32^3 \times 48)$ available with the same pion mass and lattice constant, which would help to sample the phase shift curve more precisely.

- We have done the calculation on only 1/3rd of total configurations available.
- We have another volume $(32^3 \times 48)$ available with the same pion mass and lattice constant, which would help to sample the phase shift curve more precisely.
- With the application of *t*-matrix fits, we can deal with non-resonant contributions from other *J*'s and *l*'s.

- We have done the calculation on only 1/3rd of total configurations available.
- We have another volume $(32^3 \times 48)$ available with the same pion mass and lattice constant, which would help to sample the phase shift curve more precisely.
- With the application of *t*-matrix fits, we can deal with non-resonant contributions from other *J*'s and *l*'s.
- Only one Breit Wigner model was taken into account, more models need to be taken with more data.

Collaborators

Constantia Alexandrou (University of Cyprus / The Cyprus Institute) Stefan Krieg (Forschungszentrum Jülich / University of Wuppertal) Giannis Koutsou (The Cyprus Institute) Luka Leskovec (University of Arizona) Stefan Meinel (University of Arizona / RIKEN BNL Research Center) John Negele (MIT) Marcus Petschlies (University of Bonn / Bethe Center for Theoretical Physics) Andrew Pochinsky (MIT) Gumaro Rendon (University of Arizona) Giorgio Silvi (Forschungszentrum Jülich / University of Wuppertal) Sergey Syritsyn (Stony Brook University / RIKEN BNL Research Center)