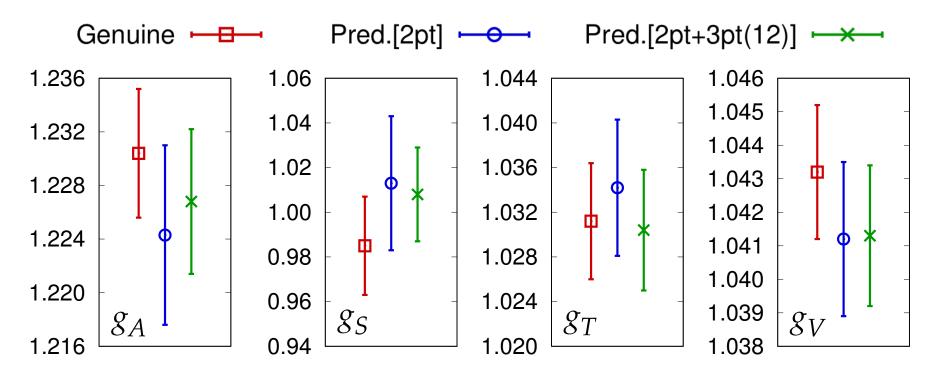
Do NOT measure correlated observables, but train an Artificial Intelligence to predict them

Boram Yoon Los Alamos National Laboratory

Lattice 2018, East Lansing, Michigan, USA, July 22-28, 2018

arXiv:1807.05971

Prediction of C_{3pt} from C_{2pt}



Systematic error due to ML prediction included in errorbars

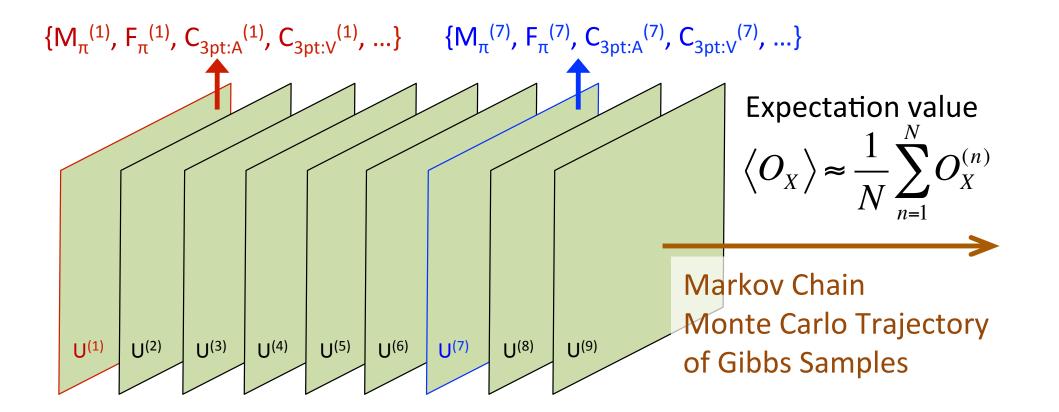
Genuine

Directly measured on 2263 confs

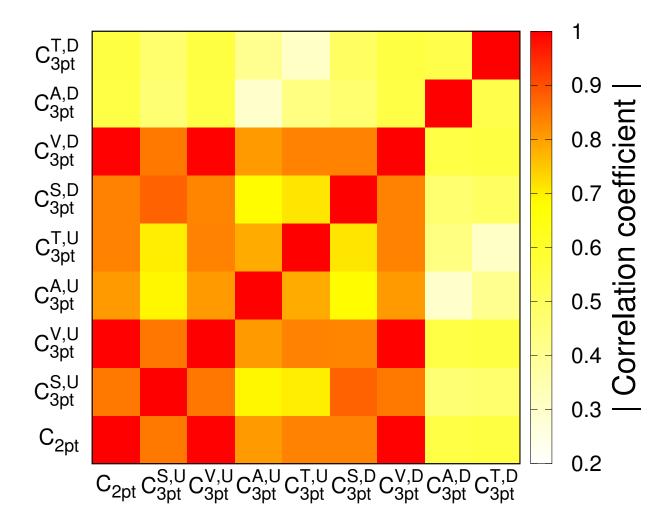
• ML Prediction

Directly measured on 400 confs + ML prediction on 1863 confs

Lattice QCD Observables are Correlated



Correlation Map of Nucleon Observables



Correlation between proton(uud)
 3-pt and 2-pt correlation functions

• Clover-on HISQ
$$a = 0.089 \text{ fm}, M_{\pi} = 313 \text{MeV}$$

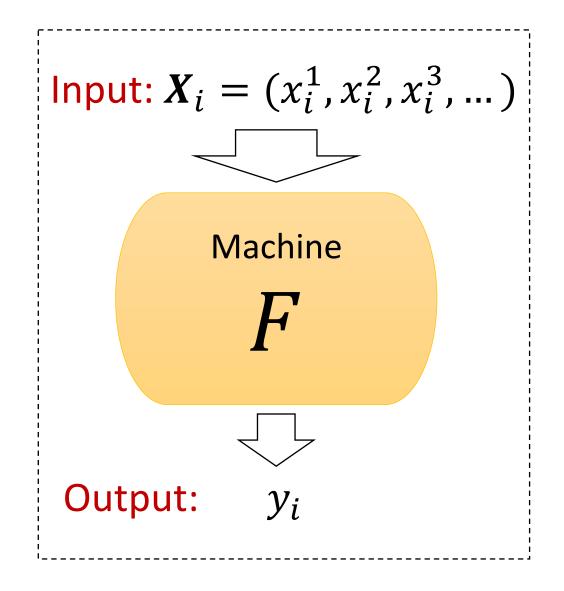
 $\tau = 10a, t = \tau/2$

Using these correlations,
 C_{3pt} can be estimated from C_{2pt}
 on each configuration

Machine Learning

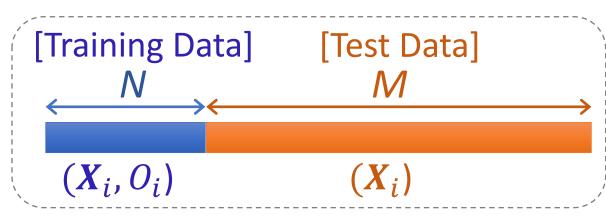
- One can consider the machine learning (ML) process as a data fitting
- The machine *F* has very general fitting functional form with huge number of free parameters
- The free parameters are determined from large number of training data: $F(\mathbf{X}_i) \approx y_i$
- For example,

X_i: pixels of a picture
y_i : "cat" or "dog"

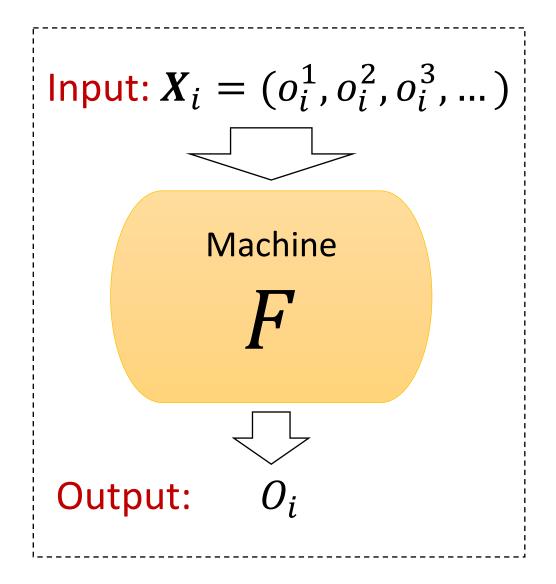


Machine Learning on Lattice QCD Observables

- Assume *N*+*M* indep. measurements
- Common observables X_i on all N+M Target observable O_i on first N



- **1)** Train machine **F** to yield O_i from X_i on the Training Data
- 2) Predict O_i of the Test data from X_i $F(X_i) = O_i^P \approx O_i$



Prediction Bias

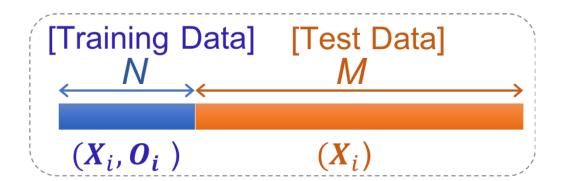
- $F(X_i) = O_i^P \approx O_i$
- Simple average

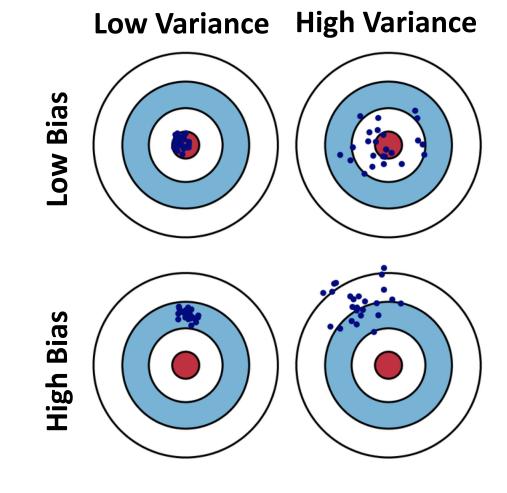
 $\overline{O} = \frac{1}{M} \sum_{i=N+1}^{N+M} O_i^P$

is not correct due to prediction bias

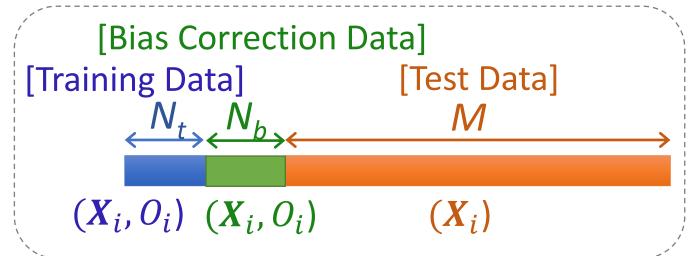
- Prediction = TrueAnswer + Noise + Bias
- ML prediction may have bias

 $\langle O_i^P \rangle \neq \langle O_i \rangle$ Bias = $\langle O_i^P \rangle - \langle O_i \rangle$





Bias Correction

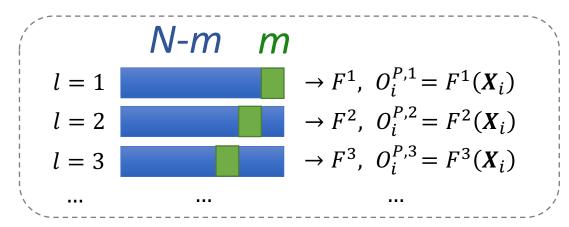


• Average of predictions on test data with bias correction

$$\overline{O} = \frac{1}{M} \sum_{i=N+1}^{N+M} O_i^P + \frac{1}{N_b} \sum_{i=N_t+1}^{N_t+N_b} (O_i - O_i^P)$$

- Expectation value, $\langle \overline{O} \rangle = \langle O_i^P \rangle + \langle O_i O_i^P \rangle = \langle O_i \rangle$
- Training data should not overlap with bias correction data
- Not efficient: small training/bias correction data

Bias Correction – Cross Validation



• Average of predictions on test data with bias correction

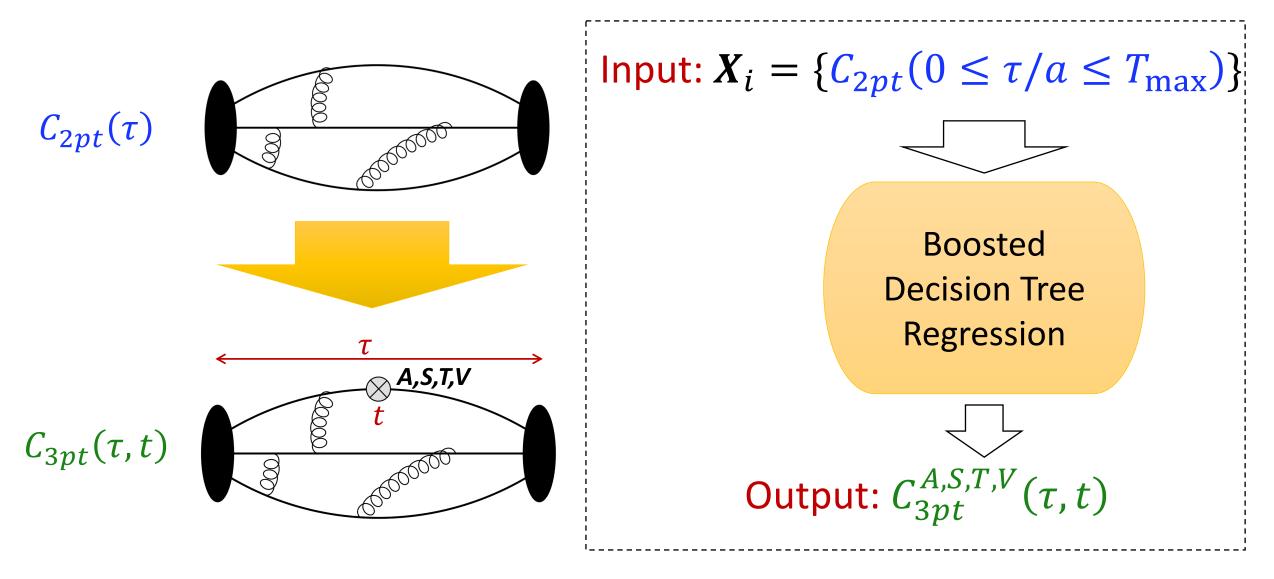
$$\overline{O} = \frac{1}{L} \sum_{l=1}^{L} \left(\frac{1}{M} \sum_{i=N+1}^{N+M} O_i^{P,l} + \frac{1}{m} \sum_{k=1}^{m} \left(O_k^l - O_k^{P,l} \right) \right)$$

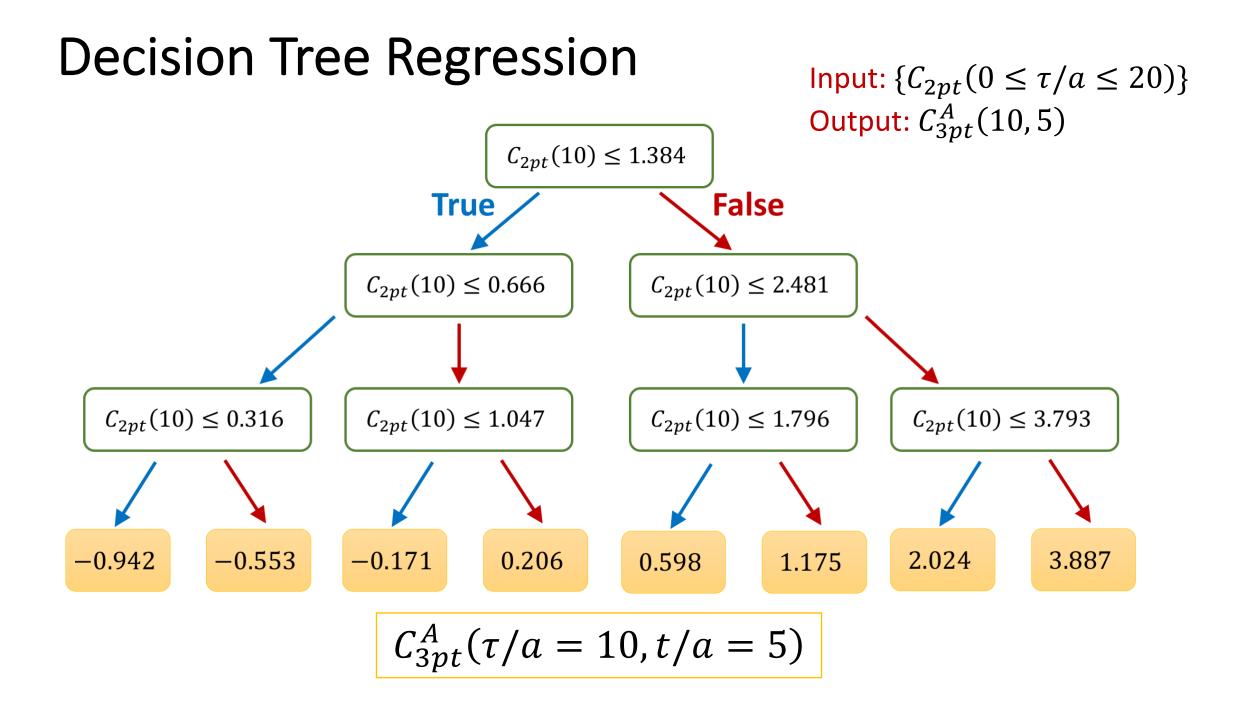
/m, m << N

• Full training data & precise bias estimation

L = N

• Systematic error of ML prediction naturally included in error estimation





Boosted Decision Tree (BDT)

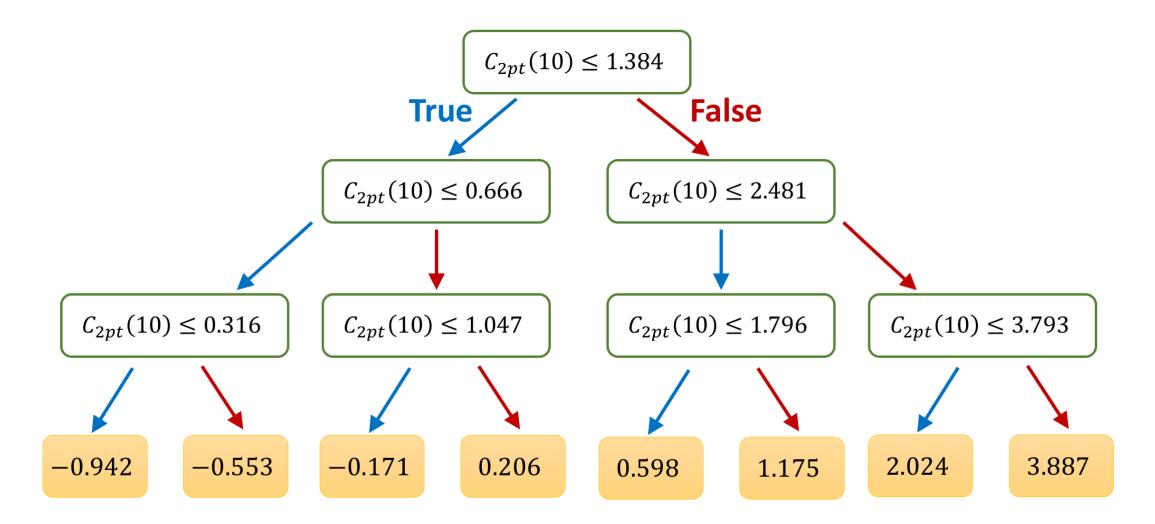
Iterative boosting

 $F_{0} = [\text{Simple DT } h_{0}]$ $F_{1} = F_{0} + [\text{Simple DT } h_{1} \text{ that corrects residual error of } F_{0}]$ $F_{2} = F_{1} + [\text{Simple DT } h_{2} \text{ that corrects residual error of } F_{1}]$ $F_{3} = F_{2} + [\text{Simple DT } h_{3} \text{ that corrects residual error of } F_{2}]$... $F_{n} = F_{n-1} + h_{n}$

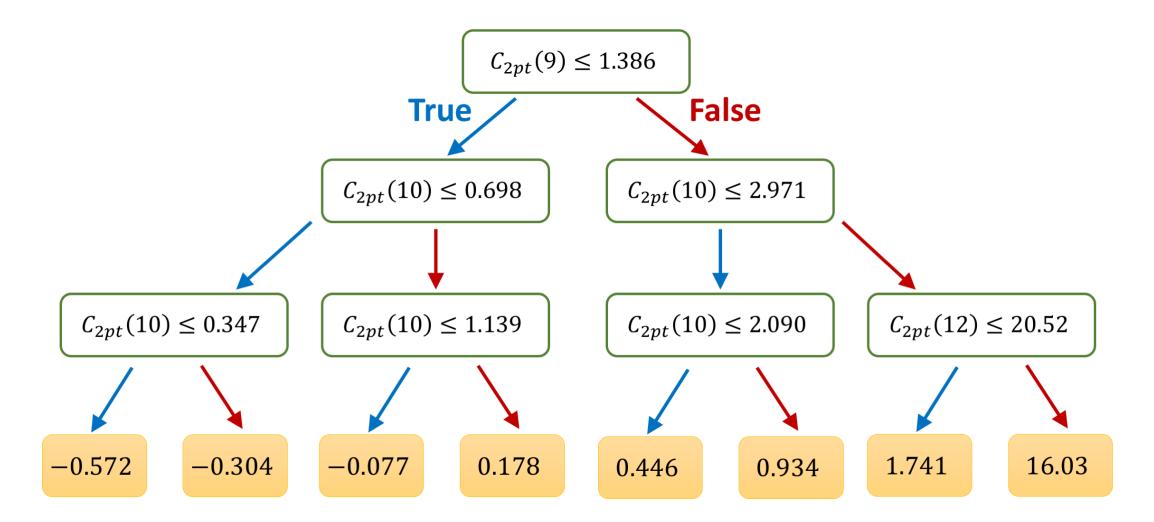
$$F(X) = F_{N_{boost}}(X)$$

• In this study, $N_{boost} = 200 - 500$

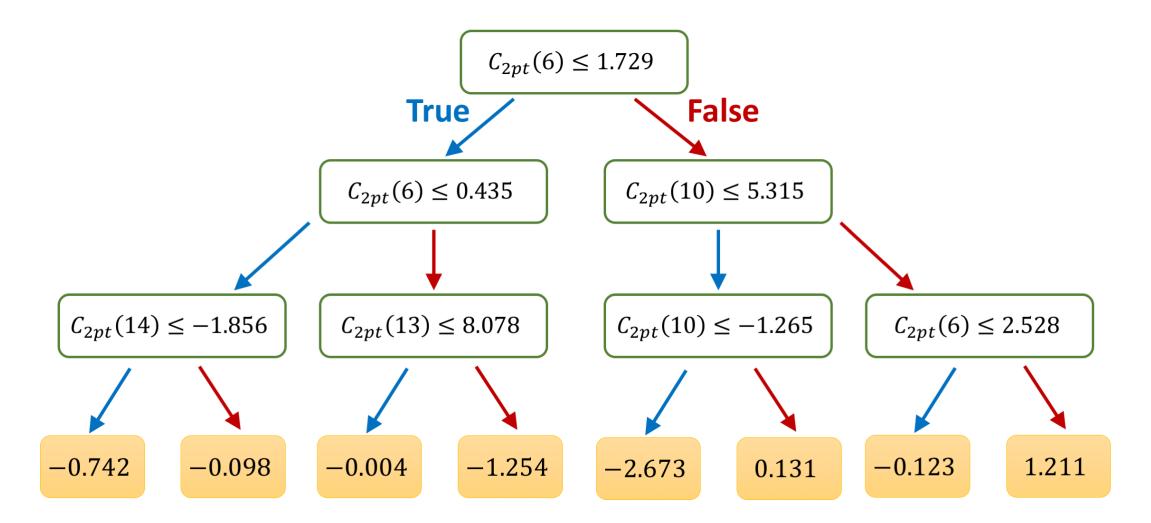
Decision Tree h_0 for $C_{3pt}^A(10, 5)$



Decision Tree h_5 for $C_{3pt}^A(10, 5)$

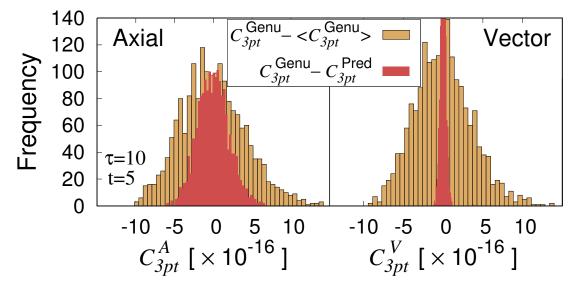


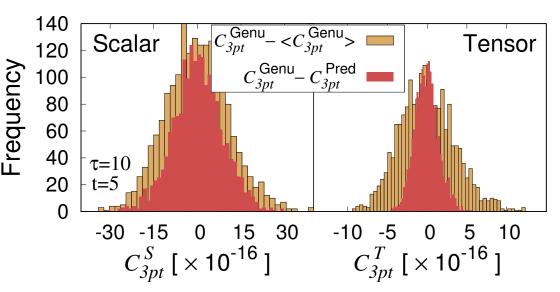
Decision Tree h_{30} for $C_{3pt}^A(10, 5)$

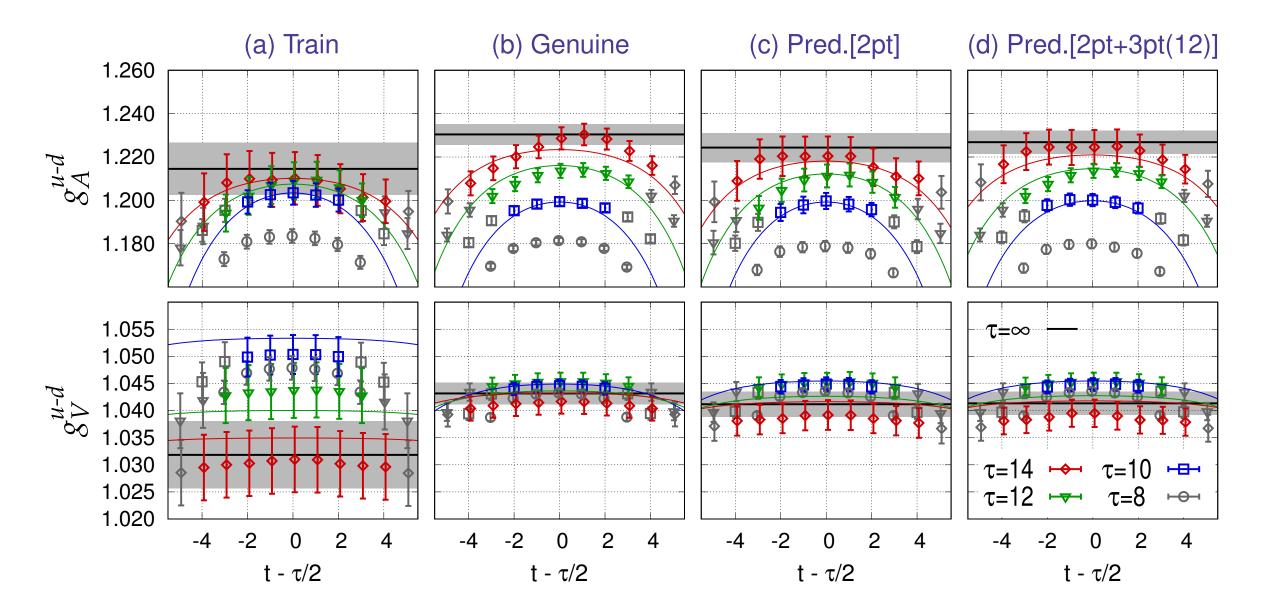


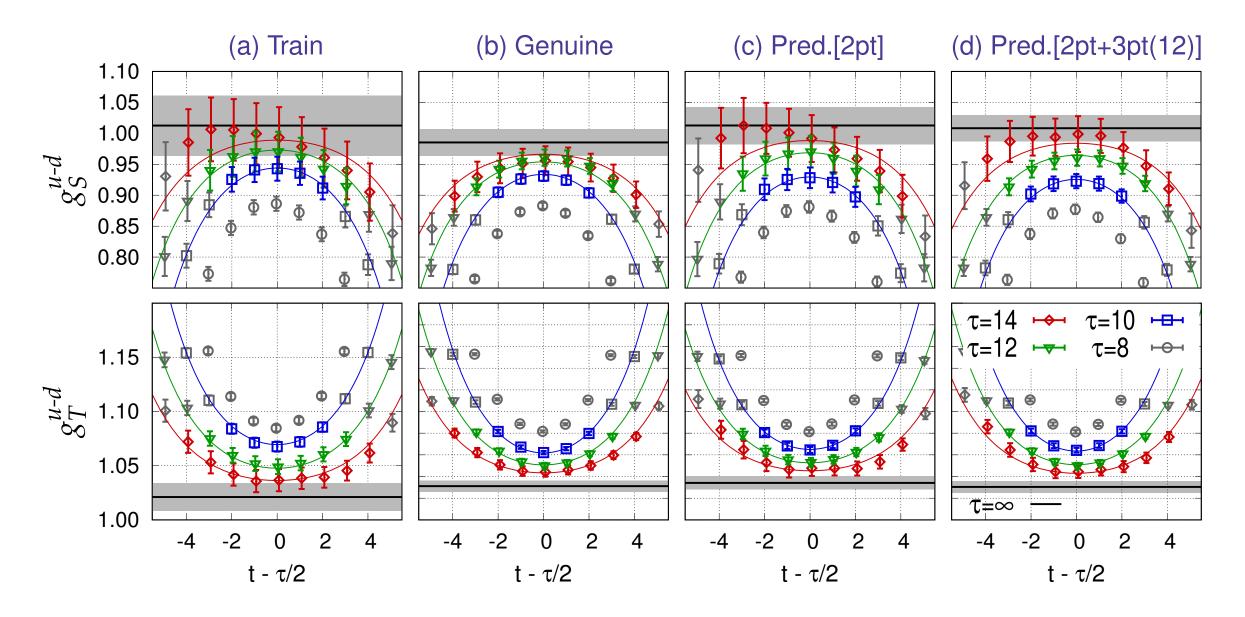
- Training and Test performed for
 - Clover-on-HISQ
 - a = 0.089 fm, $M_{\pi} = 313$ MeV
 - Measurements: 2263 confs \times 64 srcs
- # of Training data: 400 confs
 # of Test data: 1864 confs
- Predictions of $C_{3pt}^{\Gamma}(10,5)/\langle C_{2pt}(10) \rangle$

Γ	Genuine	Raw-Prediction	BC-Prediction	Bias
\mathbf{S}	0.927(10)	0.921(7)	0.924(20)	+0.003(19)
А	1.1968(38)	1.1971(32)	1.1974(55)	+0.0003(44)
Т	1.0594(31)	1.0628(27)	1.0624(40)	-0.0004(30)
V	1.0418(33)	1.0419(32)	1.0422(33)	+0.0003(7)









• Results extrapolated to $\tau \rightarrow \infty$

	Genuine	$\operatorname{Pred}[C_{2\mathrm{pt}}]$	$Pred.[C_{2pt}+C_{3pt}(12)]$
g_S	0.985(22)	1.013(30)	1.008(21)
g_A	1.2304(48)	1.2243(67)	1.2268(54)
g_T	1.0312(52)	1.0342(61)	1.0304(54)
g_V	1.0432(20)	1.0412(23)	1.0413(21)
])	2263 DM Direct Meas.)	400 DM + 1863 Pred.	400 DM + 1863 Pred.

Quark Chromo EDM (cEDM)

• Simulation in presence of CPV cEDM interaction

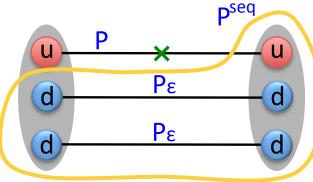
$$S = S_{QCD} + S_{cEDM}$$
$$S_{cEDM} = -\frac{i}{2} \int d^4 x \ \tilde{d}_q g_s \overline{q} (\sigma \cdot G) \gamma_5 q$$

 Schwinger source method Include cEDM term in valence quark propagators by modifying Dirac operator

$$D_{\rm clov} \rightarrow D_{\rm clov} + i\varepsilon\sigma^{\mu\nu}\gamma_5 G_{\mu\nu}$$

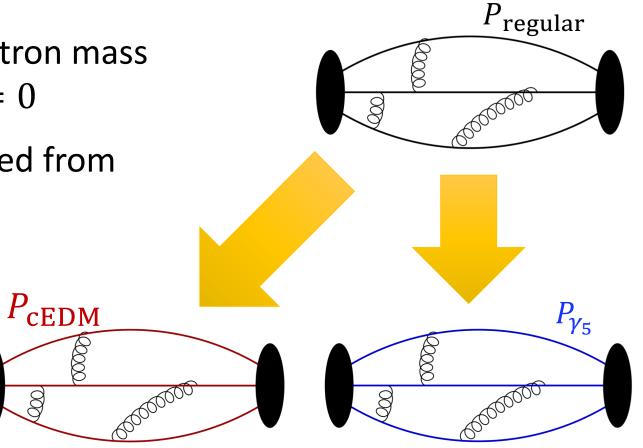
• cEDM contribution to nEDM can be obtained by calculating vector form-factor F_3 with propagators including cEDM & $O_{\gamma_5} = \overline{q}\gamma_5 q$





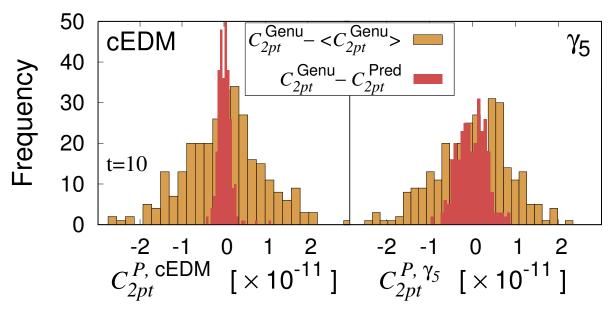
Prediction of C_{2pt}^{CPV} from C_{2pt}

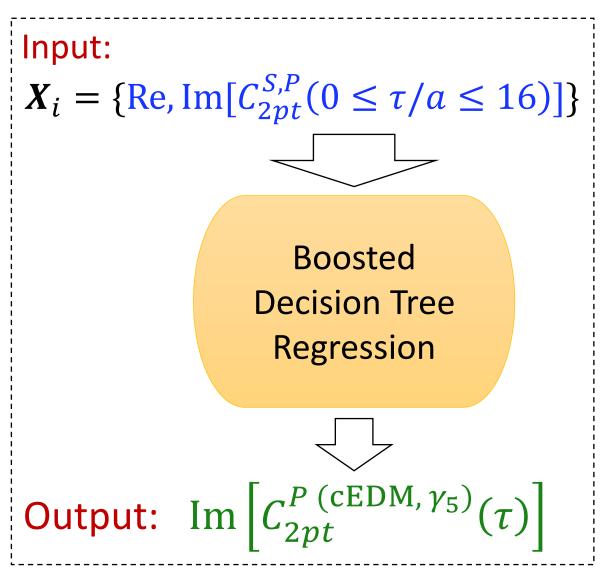
- Predict C_{2pt} for cEDM and γ_5 insertions from C_{2pt} without CPV
- CPV interactions \rightarrow phase in neutron mass $(ip_{\mu}\gamma_{\mu} + me^{-2i\alpha\gamma_{5}})u_{N} = 0$
- At leading order, α can be obtained from $C_{2pt}^{P} \equiv \text{Tr}(\gamma_{5} \langle N\overline{N} \rangle)$



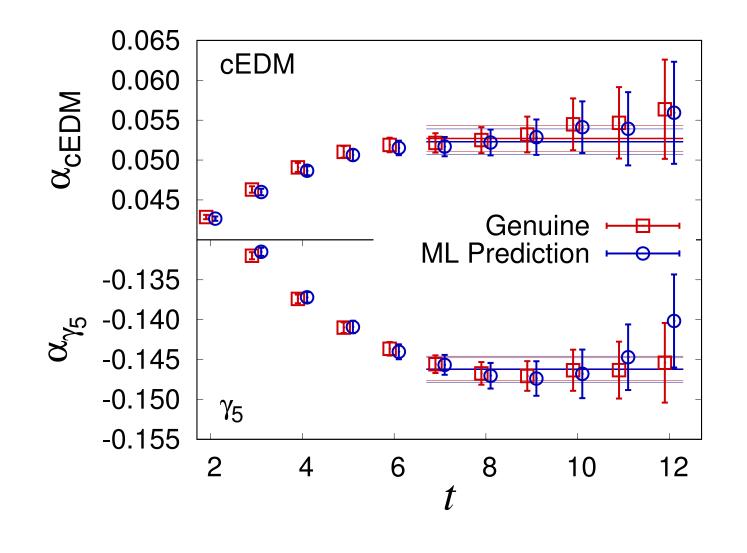
Prediction of C_{2pt}^{CPV} from C_{2pt}

- Training and Test performed for
 - Clover-on-HISQ
 - a = 0.12 fm, $M_{\pi} = 305$ MeV
 - Measurements: 400 confs \times 64 srcs
- # of Training data: 100 confs
 # of Test data: 300 confs





Prediction of C_{2pt}^{CPV} from C_{2pt}



α_{cEDM} Genuine: 0.0527(16) Prediction: 0.0523(16)

α_{γ5}
 Genuine: -0.1462(14)
 Prediction: -0.1462(16)

Genuine: DM on 400 confs
 Prediction: DM on 100 confs
 + ML prediction on 300 confs

Summary

- Machine learning is used to predict unmeasured observables from measured observables
- Unbiased estimator using cross-validation is presented
- Demonstrated for two lattice QCD calculations:
 1) Prediction of C_{3pt} from C_{2pt}
 2) Prediction of C^{CPV}_{2pt} from C_{2pt}
- The approach can be applied to various lattice calculations and reduce measurement cost

BDT with scikit-learn Python ML Library

```
>>> import numpy
>>> from sklearn.ensemble import GradientBoostingRegressor
>>>
>>> X = numpy.random.uniform(size=(100,2))*10 # 100 random samples
>>> y = [x[0]^{**2} + 2^{*}x[1] for x in X]
                                                 X = [[a_1, b_1], [a_2, b_2], ...]
>>>
                                                 y = [a_1^2 + 2b_1, a_2^2 + 2b_2, ...]
>>> gbr = GradientBoostingRegressor()
>>> gbr.fit(X,y) # Training
>>>
>>> gbr.predict([[3,4]]) # 3<sup>2</sup>+2×4 = 17
array([15.20630936])
>>> gbr.predict([[6,3]]) # 6<sup>2</sup>+2×3 = 42
array([42.77231812])
>>> gbr.predict([[8,5]]) # 8<sup>2</sup>+2×5 = 74
array([74.14274825])
```

Comparison of Regression Models

	Linear Regression	BDT	Neural Network
Speed	Fastest	Fast	Slow
Performance	Bad for nonlinear	Okay	Possibly better
Tuning Parameters	None or a few	Few; not sensitive	Many; sensitive
Overfitting Risk	Very Low	Low	High
Training Data Requirement	Small	Medium	Large
Interpretability	Yes	Somewhat	Not likely