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Prediction of !"#$ from !%#$

• Genuine
Directly measured on 2263 confs
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1 • ML Prediction
Directly measured on 400 confs
+ ML prediction on 1863 confs

Systematic error due to ML prediction included in errorbars



Lattice QCD Observables are Correlated
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Correlation Map of Nucleon Observables

• Correlation between proton(uud)
3-pt and 2-pt correlation functions

• Clover-on HISQ
! = 0.089 fm, '( = 313MeV
+ = 10!, , = +/2

• Using these correlations, 
/012 can be estimated from /312
on each configuration 
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Machine Learning
• One can consider the machine 

learning (ML) process as a data fitting
• The machine ! has very general 

fitting functional form with huge 
number of free parameters
• The free parameters are determined 

from large number of training data:
! "# ≈ %#

• For example, 
"#: pixels of a picture
%# : “cat” or “dog”

Machine

!

Input: "# = ((#), (#+, (#,, … )

Output:      %#



Machine Learning on Lattice QCD Observables
• Assume N+M indep. measurements
• Common observables !" on all N+M

Target observable #" on first N

Machine

$

Input: !" = ('"(, '"*, '"+, … )

Output:      #"

1) Train machine F to yield #" from !"
on the Training Data

2) Predict #" of the Test data from !"
.(!") = #"/ ≈ #"

N M

(!", #") (!")

[Training Data] [Test Data]



Prediction Bias
• !(#$) = '$( ≈ '$
• Simple average

' = 1
+ ,

$-./0

./1
'$(

is not correct due to prediction bias
• Prediction = TrueAnswer + Noise + Bias
• ML prediction may have bias

'$( ≠ '$
Bias = '$( − '$ Hi
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Bias Correction

• Average of predictions on test data with bias correction

! = 1
$ %

&'()*

()+
!&, +

1
./

%
&'(0)*

(0)(1
!& − !&,

• Expectation value, ! = !&, + !& − !&, = !&
• Training data should not overlap with bias correction data
• Not efficient: small training/bias correction data

Nt M

(4&, !&) (4&)

[Training Data] [Test Data]
Nb

[Bias Correction Data]

(4&, !&)



Bias Correction – Cross Validation

• Average of predictions on test data with bias correction

! = 1
$%&'(

) 1
* %

+',-(

,-.
!+/,& +

1
2%

3'(

4
!3& − !3/,&

$ = 6/2, 2 ≪ 6
• Full training data & precise bias estimation
• Systematic error of ML prediction naturally included in error estimation

N-m m
9 = 1
9 = 2
9 = 3
… …

→ >(, !+/,(= >( ?+
→ >@, !+/,@= >@ ?+
→ >A, !+/,A= >A ?+

…



Prediction of !"#$ from !%#$

Boosted
Decision Tree

Regression

Input: &' = {*+,- 0 ≤ 0/2 ≤ 3456 }

Output: *8,-9,;,<,= 0, >

!

"

*+,- 0

*8,- 0, >
A,S,T,V



Decision Tree Regression

!"#$% &/( = 10, -/( = 5

Input: {!0#$ 0 ≤ &/( ≤ 20 }
Output: !"#$% 10, 5



Boosted Decision Tree (BDT)
• Iterative boosting

!" = [Simple DT ℎ"]
!% = !" + [Simple DT ℎ% that corrects residual error of !"]
!& = !% + [Simple DT ℎ& that corrects residual error of !%]
!' = !& + [Simple DT ℎ' that corrects residual error of !&]

…
!( = !()% + ℎ(
! + = !,-../0(+)

• In this study, 345567 = 200 − 500



Decision Tree ℎ" for #$%&' 10, 5



Decision Tree ℎ" for #$%&' 10, 5



Decision Tree ℎ"# for $"%&' 10, 5



Prediction of !"#$ from !%#$
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• Training and Test performed for
- Clover-on-HISQ
- & = 0.089fm, ,- = 313 MeV
- Measurements: 2263 confs ⨉ 64 srcs

• # of Training data:   400 confs
# of Test data:        1864 confs
• Predictions of 12345 10,5 / 1934 10



Prediction of !"#$ from !%#$
(a) Train (b) Genuine (c) Pred.[2pt] (d) Pred.[2pt+3pt(12)]
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Prediction of !"#$ from !%#$
(a) Train (b) Genuine (c) Pred.[2pt] (d) Pred.[2pt+3pt(12)]
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Prediction of !"#$ from !%#$
• Results extrapolated to & → ∞

3

� Genuine Raw-Prediction BC-Prediction Bias

S 0.927(10) 0.921(7) 0.924(20) +0.003(19)

A 1.1968(38) 1.1971(32) 1.1974(55) +0.0003(44)

T 1.0594(31) 1.0628(27) 1.0624(40) �0.0004(30)

V 1.0418(33) 1.0419(32) 1.0422(33) +0.0003(7)

TABLE I. Average of C�
3pt(10a, 5a)/hC2pt(10a)i on the test

data set. Genuine is the directly measured data, Raw-

Prediction is the ML prediction made using only the C2pt

measurements without bias correction. Bias is the estimated
size of bias calculated on the training data set using Eq. (1),
and BC-Prediction is the bias corrected ML prediction.

FIG. 2. Statistical distribution of C3pt(10a, 5a) (Gold) and
the prediction error (red).

diction procedure, all numbers are normalized by the
average value of the C2pt so that all numbers fed into
BDT become O(1); C3pt(⌧, t) are divided by hC2pt(⌧)i
and C2pt(t) are divided by hC2pt(t)i. All training and
predictions are done for each source, but all statistical
analysis are done after taking average over sources, con-
figuration by configuration.

Table I shows the comparison between the direct calcu-
lation of C3pt(10a, 5a) and their ML predictions. With-
out proper estimation of the bias, the statistical errors
tend to be underestimated. For the bias correction, we
use L = 100. Fig. 2 shows the comparison between the
statistical distribution of the raw data of the target ob-
servables and the prediction error for each configuration.
One parameter representing the quality of the prediction
on a stochastic variable is the ratios between the stan-
dard deviations of the prediction error and the raw data:
�PE/�data. The smaller value of ratio indicates the bet-
ter prediction, or equivalently, the larger bias estimation
data needed for a precise estimate. For example, when
�PE/�data = 0.5, the bias estimated on 100 samples will
have similar size of statistical uncertainty as that of C3pt

calculated on 400 samples. The ratio �PE/�3pt = 0.77,
0.48, 0.43 and 0.10 for S, A, T and V, respectively, at
(⌧, t) = (10a, 5a). We also observe that the ratio is in-
creased for larger ⌧ values in case of A, T and V. For
example, the ratios for A are 0.38, 0.48, 0.60 and 0.71 for
⌧/a = 8, 10, 12 and 14, respectively, at t = ⌧/2.

After predictions are made, we have C3pt(⌧, t) directly

measured on 400 configurations and ML predicted on
1863 configurations, for each ⌧ and t values. Next step is
to calculate the nucleon charges by fitting the all data on
2263 configurations to an ansatz including the leading
excited state contamination in spectral decomposition
(two-state fit) [10, 13, 21]. Three complications arises
due to the indirect estimates of the C3pt(⌧, t).
First, BDT regression algorithms are trained for tar-

geting C3pt(⌧, t) at a given ⌧ and t values, separately, and
their prediction is not precise enough to capture the ex-
act covariance matrix that will be inverted in the least-�2

fitting. One possible workaround is to use an approxi-
mated covariance matrix calculated on the training data
with proper scaling. In this study, however, we use un-
correlated fit for the analysis of C3pt(⌧, t) ignoring corre-
lations between C3pt at di↵erent ⌧ and t values, and fully
correlated fit for the analysis of C2pt.

Second, we have two di↵erent data sets that need to be
combined: training and test data set. They are not iden-
tically distributed because the prediction is not exact,
and the predicted observables may have di↵erent vari-
ance from that of directly measured observables. We
use slightly modified Bootstrap method considering the
problem as a data analysis with two di↵erent random
variables: instead of selecting 2263 random samples with
replacements from all 2263 configurations, for each boot-
strap sample, we sample 400 from the training data and
sample 1863 from the test data and combine them. We
ignore possible correlation between the training data and
predictions on test data, assuming the e↵ect is small.

Third, no bias correction for each configuration is avail-
able because the bias correction in Eq. (1) is for an
average over all test data set. Therefore, the Boot-
strap resampling is performed for the raw predictions of
C3pt(⌧, t), and the bias correction e↵ect is propagated
through following. Using the training data and Eq. (1),
mean value of the bias (µb) and covariance matrix of
the mean of the bias (⌃b) for all ⌧ and t are calculated.
Then, for each bootstrap sample, we generate a random
bias vector following the multivariate normal distribution
of N (µb,⌃b), and the bootstrap samples of the test data
set are shifted by the random bias vector. Also, the error
of the bias vector (diagonal of ⌃b) is added to the error
of C3pt(⌧, t) in quadrature.

In addition to the ML predictions only from C2pt, we

test predictions from C2pt(t) and C
A,S,T,V
3pt (⌧/a = 12, t)

data. As the more data provided to the ML algorithm,
the more precise predictions for C3pt(⌧/a = 8, 10, 14) are
made. Fig. 3 compares the charges calculated from the
directly measured observables and their ML predictions.
The results extrapolated to ⌧ ! 1 are below:

Genuine Pred.[C2pt] Pred.[C2pt+C3pt(12)]

gS 0.985(22) 1.013(30) 1.008(21)

gA 1.2304(48) 1.2243(67) 1.2268(54)

gT 1.0312(52) 1.0342(61) 1.0304(54)

gV 1.0432(20) 1.0412(23) 1.0413(21)

2263 DM
(Direct Meas.)

400 DM
+ 1863 Pred.

400 DM
+ 1863 Pred.



Quark Chromo EDM (cEDM)
• Simulation in presence of CPV cEDM interaction

• Schwinger source method
Include cEDM term in valence quark propagators 
by modifying Dirac operator

• cEDM contribution to nEDM can be obtained
by calculating vector form-factor F3 with
propagators including cEDM & O"# = %&'%

S = SQCD + ScEDM

ScEDM = −
i
2

d 4x !dqgsq(σ ⋅G)γ5q∫

Dclov →Dclov + iεσ
µνγ5Gµν
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Prediction of !"#$
%&' from !"#$

()*+, (-.

(/01234/

• Predict 5678 for cEDM and 9: insertions
from 5678 without CPV

• CPV interactions è phase in neutron mass
;<=9= + ?@A6BC-. DE = 0

• At leading order, H can be obtained from
5678
I ≡ Tr 9: M NM



Prediction of !"#$%&' from !"#$
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Boosted
Decision Tree

Regression

Input:
() = {Re, Im[2345

6,7 0 ≤ :/< ≤ 16 ]}

Output:   Im 2345
7 (BCDE, FG) :

• Training and Test performed for
- Clover-on-HISQ
- < = 0.12 fm, KL = 305 MeV
- Measurements: 400 confs ⨉ 64 srcs

• # of Training data:  100 confs
# of Test data:         300 confs



Prediction of !"#$%&' from !"#$
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Genuine:    0.0527(16)
Prediction: 0.0523(16)

• (-.
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Prediction: -0.1462(16)

ØGenuine: DM on 400 confs
ØPrediction: DM on 100 confs

+ ML prediction on 300 confs



Summary
•Machine learning is used to predict unmeasured 

observables from measured observables

•Unbiased estimator using cross-validation is presented

•Demonstrated for two lattice QCD calculations:
1) Prediction of !"#$ from !%#$
2) Prediction of !%#$&'( from !%#$

• The approach can be applied to various lattice 
calculations and reduce measurement cost



BDT with scikit-learn Python ML Library
>>> import numpy
>>> from sklearn.ensemble import GradientBoostingRegressor
>>>
>>> X = numpy.random.uniform(size=(100,2))*10  # 100 random samples
>>> y = [x[0]**2 + 2*x[1] for x in X]
>>>
>>> gbr = GradientBoostingRegressor()
>>> gbr.fit(X,y)   # Training
>>>
>>> gbr.predict([[3,4]])    # 32+2⨉4 = 17
array([15.20630936])

>>> gbr.predict([[6,3]])    # 62+2⨉3 = 42
array([42.77231812])

>>> gbr.predict([[8,5]])    # 82+2⨉5 = 74
array([74.14274825])

" = $%, '% , $(, '( , …
y = $%( + 2'%, $(( + 2'(, …



Comparison of Regression Models

Linear Regression BDT Neural Network

Speed Fastest Fast Slow

Performance Bad for nonlinear Okay Possibly better

Tuning Parameters None or a few Few; not sensitive Many; sensitive

Overfitting Risk Very Low Low High

Training Data 
Requirement Small Medium Large

Interpretability Yes Somewhat Not likely


