
Kate Clark, July 25th 2018

CLOVER HMC AND STAGGERED
MULTIGRID ON SUMMIT AND VOLTA

!2

OUTLINE

Clover HMC Multigrid
Setup acceleration
Results
Improving strong scaling

Staggered Multigrid
HISQ Algorithm
Results

with
Bálint Joó
Arjun Gambhir
Mathias Wagner
Evan Weinberg
Frank Winter
Boram Yoon

with
Rich Brower
Alexei Strelchenko
Evan Weinberg

QUDA
• “QCD on CUDA” – http://lattice.github.com/quda (open source, BSD license)
• Effort started at Boston University in 2008, now in wide use as the GPU backend for

BQCD, Chroma, CPS, MILC, TIFR, tmLQCD, etc.
• Provides:
— Various solvers for all major fermionic discretizations, with multi-GPU support
— Additional performance-critical routines needed for gauge-field generation
• Maximize performance
– Exploit physical symmetries to minimize memory traffic
– Mixed-precision methods
– Autotuning for high performance on all CUDA-capable architectures
– Domain-decomposed (additive Schwarz) preconditioners for strong scaling
– Eigenvector and deflated solvers (Lanczos, EigCG, GMRES-DR)
– Multi-source solvers
– Multigrid solvers for optimal convergence
• A research tool for how to reach the exascale

!3

6

NVIDIA POWERS WORLD'S FASTEST
SUPERCOMPUTER

27,648
Volta GPUs

Summit Becomes First System to Scale the 100 Petaflops Milestone

122 PF 3 EF
HPC AI

HMC MULTIGRID

!6

STARTING POINT

2+1 flavour Wilson-clover fermions with Stout improvement running on Chroma
Physical parameters:

V = 643x128, ml=-0.2416, ms=-0.2050, a~0.09 fm, mπ~170 MeV

Performance measured relative to prior pre-MG optimal approach

Essentially the algorithm that has been run on Titan 2012-2016
3 Hasenbusch ratios, with heaviest Hasenbusch mass = strange quark

Represented as 1 + 1 + 1 using multi-shift CG (pure double precision)
2-flavour solves: GCR + Additive Schwarz preconditioner (mixed precision)
All fermions on the same time scale using MN5FV 4th order integrator

Benchmark Time: 1024 nodes of Titan = 4006 seconds

!7

CHROMA + QDP-JIT/LLVM

QDP-JIT/PTX: implementation of QDP++ API for NVIDIA GPUs by Frank Winter (arXiv:1408.5925)
Chroma builds unaltered and offloads evaluations to the GPU automatically
Direct device interface to QUDA to run optimized solves

Prior publication covers earlier with direct PTX code generator

Now use LLVM IR code generator and can target any architecture that LLVM supports

Chroma/QDP-JIT: Clover HMC in production on Titan and newer machines

Latest improvements:
Caching of PTX kernels to eliminate overheads
Faster startup times making the library more suitable for all jobs

https://github.com/JeffersonLab/qdp-jit

!8

WHY HMC + MULTIGRID?

HMC typically dominated by solving the Dirac equation

However, much more challenging than analysis
Few solves per linear system
Can be bound by heavy solves (c.f. Hasenbusch mass preconditioning)

Build on top of pre-existing QUDA MG (arXiv:1612.07873)

Multigrid setup must run at speed of light since little scope for amortizing
Reuse and evolve multigrid setup where possible

Generate null vectors (BiCGStab, CG, etc. acting on homogenous system)

Block Orthogonalization of basis set

Coarse-link construction (Galerkin projection)

!9

MULTIGRID SETUP

Dc = �
X

µ

h
Y �f
µ (x̂) + Y +b†

µ (x̂� µ)
i
+X�x̂,ŷ

Y +b
µ (x̂) =

X

x2x̂

V †(x)P+µUµ(x)A
�1(y)V (y)�x,y+µ�x̂,ŷ+µ

Y �f
µ (x̂) =

X

x2x̂

V †(x)A�1(x)P�µUµ(x)V (y)�x,y+µ�x̂,ŷ+µ

X(x̂) =
X

x2x̂,µ

V †(x)
�
P+µUµ(x)A

�1(y) +A�1(x)P�µUµ(x)
�
V (y)�x,y+µ�x̂,ŷ

“backward link”

“forward link”

“coarse clover”

Dc = P †DP

Bi = QiRi = V iBi
c QR decomposition over each blockB =

X

i

Bi, V =
X

i

V i

Axk = 0, k = 1 . . . N, ! B = (x1x2 . . . xn)

!10

HMC MULTIGRID ALGORITHM

Use the same null space for all masses (setup run on lightest mass)
We use CG to find null-space vectors

Evolve the null space vectors as the gauge field evolves (Lüscher 2007)
Update the null space when the preconditioner degrades too much on lightest mass

Parameters to tune
Refresh threshold: at what point do we refresh the null space?
Refresh iterations: how much work do we do when refreshing?

!11

FORCE GRADIENT INTEGRATOR

Standard 4th order integrator following Omelyan
requires 5 force evaluations per step (4MN5FV)

Omelyan 2nd order integrator requires 2 force
evaluations per step

Force gradient integrator (Clark, Kennedy, Silva)
possible with 3 force evaluations + 1 auxiliary
force gradient evaluation (Yin and Mawhinney)
Saves on solves compared to 4MN5FV
4th order so volume scaling of cost is V9/8

Scaling of dH with dt in a FG Integrator V=8x8x8x8, Wilson Gauge

!12

OPTIMIZATION AND TUNING STEPS

Replace GCR+DD with GCR-MG
Made Hasenbusch terms cheaper so add extra Hasenbsuch term and retuned
Put heaviest fermion doublet onto the fine (gauge) time scale

Optimize mixed-precision multigrid method:
16-bit precision wherever it makes sense (null space, coarse link variables, halo exchange)

Volta 4x faster than Pascal for key setup routines: use multigrid for all 2-flavour solves

Replaced MN5FV integrator with Force Gradient integrator, tuned number of steps

Multi-shift CG is expensive (no multigrid - yet…)
Replace pure fp64 multi-shift CG with mixed-precision multi-shift CG and refinement: 1.5x faster

(far from exclusive)

!13

NULL-SPACE EVOLUTION

!14

HMC SPEEDUP PROGRESSION

Titan
(original)

SummitDev
(original)

SummitDev
(+MG)

SummitDev
(+FG)

Summit
(+MG optimize)

Seconds

0 1250 2500 3750 5000

1024x Kepler

128x Pascal

128x Pascal

128x Pascal

128x Volta

!15

LATEST RESULTS

4.1x faster
on 2x fewer

GPUs

~8x gain

9.1x faster
on 8x fewer

GPUs

~73x gain

!16

WORK IN PROGRESS TO GET TO >100X

Network bandwidth limited for halo exchange on Summit
Deploy 8-bit precision for halo exchange in smoother
Close to 2x reduction in nearest-neighbor network traffic
Initial testing shows negligible effect on convergence

Latency limited by global reductions
Replace MR smoother and bottom GCR solver with communication avoiding GCR (CA-GCR)
>6x decrease in number of global reductions
>20% speedup on workstation, expect much bigger gain on 100s GPUs 40% speedup at Titan 512 nodes

Use multi-rhs null-space generation, e.g., 24x CG => 1x block CG on 24 rhs

Cannot coarsen beyond 24 coarse grid points per MPI process presenting hard limit on scaling

!17

HMC MULTIGRID SUMMARY

2018 Chroma gauge generation close to 100x increase in throughput vs 2016
Multigrid solver
Force gradient integrator and MD tuning
Titan -> Summit (Kepler to Volta)

Work continues to further improve this…

STAGGERED MULTIGRID

!19

STAGGERED MULTIGRID

Last year we presented our work on developing a staggered MG algorithm in 2-d

We have now extended this to 4-d and implemented it in QUDA

How well does this work?

!20

WHAT MAKES STAGGERED MG HARD?

Compare to Wilson MG which preserves
low modes with no cascade

Naïve Galerkin projection does not work
Spurious low modes on coarse grids
System gets worse conditioned as we
progressively coarsen

arXiv:1801.07823

https://arxiv.org/abs/1801.07823

!21

OUR SOLUTION

Staggered fermions distribute d fermions over 2d sites

Each 2d block is a supersite

or flavour representation or Kahler-Dirac block (arXiv:0509026 Dürr)

arXiv:1801.07823

https://arxiv.org/abs/1801.07823

!22

OUR SOLUTION

Transform into Kahler-Dirac form
through unitary transformation

“Precondition” the staggered operator
by the Kahler-Dirac block

arXiv:1801.07823

https://arxiv.org/abs/1801.07823

!23

arXiv:1801.07823

Removal of critical slowing down

No spurious low modes  
as we coarsen

https://arxiv.org/abs/1801.07823

!24

GOING TO 4D AND HISQ FERMIONS

Block-preconditioned operator is no longer an exact circle

Prescription is almost identical to 2-d method

Drop Naik contribution from block preconditioner

No longer a unitary transformation
No longer an exact Schur complement

Iterate between HISQ operator and block-preconditioned
system

Effectively apply MG to fat-link truncated HISQ operator only

!25

HISQ MG ALGORITHM

First “coarsening" is transformation to
block-preconditioned system

Staggered has 4-fold degeneracy
• Need 4x null space vectors (Nv=24 -> 96)
• Much more memory intensive

HISQ

Block-preconditioned 
system

First real coarse grid

B = 24, Nv=24
dof preserving

Nv=96

Nv=96

SU(3) pure-gauge with V = 323x64 and V = 483x96, a variety of β

All tests come from running on QUDA running Prometheus cluster
• 16 GPUs for 323x64, 96 GPUs for 483x96

Setup:
• CGNR
• tolerance 10-5

!26

HISQ MG RESULTS

Solver Smoother Volume tol
Small Large

level 1 GCR CA-GCR(0,6) 323x64 483x96 10-12

level 2 GCR CA-GCR(0,6) 163x32 243x48 0.05
level 3 GCR CA-GCR(0,6) 83x16 83x24 0.25
level 4 CGNE - 43x8 43x24 0.25

Very preliminary

Solver Parameters

!27

FINE GRID
Level 1

10

100

1000

10000

0.01 0.1

N
um

be
r

of
D

H
I
S
Q

m

Number of DHISQ, 323 ⇥ 64,� = 6.4

MG-GCR: 3 level
MG-GCR: 4 level
CG

10

100

1000

10000

0.01 0.1

N
um

be
r

of
D

H
I
S
Q

m

Number of DHISQ, 483 ⇥ 96,� = 6.4

MG-GCR: 3 level
MG-GCR: 4 level
CG

Zero quark mass dependence in fine grid

!28

BLOCK PRECONDITIONER
Level 2

0

0.5

1

1.5

2

2.5

3

3.5

4

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

It
er

at
io

ns

m

Level 2, Average Iterations, 483 ⇥ 96

� = 6.2, 3 level
� = 6.2, 4 level
� = 6.4, 3 level
� = 6.4, 4 level
� = 6.8, 3 level
� = 6.8, 4 level

0

0.5

1

1.5

2

2.5

3

3.5

4

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

It
er

at
io

ns

m

Level 2, Average Iterations, � = 6.4

323 ⇥ 64, 3 Level
323 ⇥ 64, 4 Level
483 ⇥ 96, 3 Level
483 ⇥ 96, 4 Level

Zero quark mass dependence in block preconditioner

!29

COARSE GRIDS
Levels 3 and 4

10

100

1000

0.01 0.1

It
er

at
io

ns

m

Three levels: Coarsest Solve, Average Iterations, 483 ⇥ 96

� = 6.2, 3 level
� = 6.4, 3 level
� = 6.8, 3 level

0

2

4

6

8

10

12

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

It
er

at
io

ns

m

Four levels: Level 3, Average Iterations, 483 ⇥ 96

� = 6.2, 4 level
� = 6.4, 4 level
� = 6.8, 4 level

10

100

1000

0.01 0.1
It

er
at

io
ns

m

Four levels: Coarsest Solve, Average Iterations, 483 ⇥ 96

� = 6.2, 4 level
� = 6.4, 4 level
� = 6.8, 4 level

!30

SPEEDDOWN

0

0.2

0.4

0.6

0.8

1

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

R
at

io

m

Ratio of CG to MG-GCR time to solution, 483 ⇥ 96,� = 6.4

CG to 3 level
CG to 4 level

!31

SPEEDUP!
switch on even-odd preconditioning

0.1

1

10

100

0.01 0.1

T
im

e
(s

)

m

Time to solution, 483 ⇥ 96,� = 6.4

MG-GCR: 3 level
CG

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
R

at
io

m

Ratio of CG to MG-GCR time to solution, 483 ⇥ 96,� = 6.4

CG to 3 level
Break even

!32

STAGGERED MULTIGRID SUMMARY

Our 2-d staggered multigrid algorithm works in 4-d with HISQ fermions
• Removal of mass dependence from the fine grid and block preconditioner
• No need to include Naik contribution when coarsening

Not much actual speedup yet…

Next steps
• More robust adaptive setup to deal large null space required
• Better approach to bottom solver (deflation, direct solve, etc.)

BACKUP

!345

U.S. BUILT TWO FLAGSHIP SUPERCOMPUTERS
Powered by the Tesla Platform

100-300 PFLOPS Peak

10x in Scientific App Performance

IBM POWER9 CPU + NVIDIA Volta GPU

NVLink High Speed Interconnect

49 TFLOPS per Node, 4608 Nodes

Major Step Forward on the Path to Exascale

!35

COMMUNICATION-AVOIDING GCR

Similar to CA-GMRES (see Mark Hoemmen’s thesis)

GCR(N) uses modified Gram Schmidt to
orthonormalize the basis at every step
• Hence N(N-1)/2 reductions

Instead use classical Gram Schmidt and
orthonormalize every N steps
• One reduction every N steps

source vector b, solution vector x

while (i<N) {
 pi+1 <- A*pi // build basis (N mat-vecs)

 qi = pi+1

}

// minimize residual solving (one “blas-3” reduction)

ψ = (q, q)-1 (q, b)

// update solution vector (one “blas-2” kernel)

x = Σk ψk pk

!36

GLOBAL SYNCHRONIZATIONS IN LQCD MG

Example GCR-MG

• 24x24x24x64 Wilson lattice

• Running at critical point

MR(0,8) smoother with GCR coarse grid solver

• 980 reductions to reach convergence

MR(0,8) smoother, with pipelined GCR

• 829 reductions to reach convergence

CA-GCR(0,8) for smoother and coarse-grid

• 153 reductions to reach convergence

• >6x reduction in reductions

20% faster on a single workstation

How much faster on Titan / Summit?

!37

GLOBAL SYNCHRONIZATIONS IN LQCD MG

Non-Hermitian system

• No guarantee of convergence

• Use a K-cycle for solver stability

GCR solver deployed at every level

• N(N+1)/2 reductions required

Use MR as a smoother

• N reductions required

WHY MULTIGRID?

-0.43 -0.42 -0.41 -0.4
mass

100

1000

10000

1e+05

D
ir

ac
 o

p
er

at
o
r

ap
p
li

ca
ti

o
n
s

32
3
96 CG

24
3
64 CG

16
3
64 CG

24
3
64 Eig-CG

16
3
64 Eig-CG

32
3
96 MG-GCR

24
3
64 MG-GCR

16
3
64 MG-GCR

Babich et al 2010
Clark et al (2016)

!38Osborn et al 2010

Optimality Speed

Stability

Ti
m

e
to

 S
ol

ut
io

n

0

10

20

30

40

50

Number of Nodes

32 64 128 256 512

BiCGstab MG

Wilson-clover, Strong scaling on Titan (K20X), V = 643x128, mπ = 197 MeV

!39

THE CHALLENGE OF MULTIGRID ON GPU

GPU requirements very different from CPU
Each thread is slow, but O(10,000) threads per GPU

Fine grids run very efficiently
High parallel throughput problem

Coarse grids are worst possible scenario
More cores than degrees of freedom

Increasingly serial and latency bound

Little’s law (bytes = bandwidth * latency)

Amdahl’s law limiter

Multigrid exposes many of the problems expected at
the Exascale

INGREDIENTS FOR PARALLEL ADAPTIVE MULTIGRID

▪ Multigrid setup
– Block orthogonalization of null space vectors
– Batched QR decomposition

▪ Smoothing (relaxation on a given grid)
– Repurpose existing solvers

▪ Prolongation
– interpolation from coarse grid to fine grid
– one-to-many mapping

▪ Restriction
– restriction from fine grid to coarse grid
– many-to-one mapping

▪ Coarse Operator construction (setup)
– Evaluate R A P locally
– Batched (small) dense matrix multiplication

▪ Coarse grid solver
– Need optimal coarse-grid operator

x
x

x

x−

x−

U x



U
x

μ

μ

ν

x x

x

x−

x−

U x



U
x

μ

μ

ν

!40

COARSE GRID OPERATOR

▪ Coarse operator looks like a Dirac operator (many more colors)
– Link matrices have dimension 2Nv x 2Nv (e.g., 48 x 48)

▪ Fine vs. Coarse grid parallelization
– Fine grid operator has plenty of grid-level parallelism
– E.g., 16x16x16x16 = 65536 lattice sites

– Coarse grid operator has diminishing grid-level parallelism
– first coarse grid 4x4x4x4= 256 lattice sites
– second coarse grid 2x2x2x2 = 16 lattice sites

▪ Current GPUs have up to 3840 processing cores

▪ Need to consider finer-grained parallelization
– Increase parallelism to use all GPU resources
– Load balancing

dofs (geometry). We start by defining the fields

W±µ
ksĉ,ls�ĉ� = V †

ksc,ksĉP
±µ
s,s�U(k+µ)c,lc��k+µ,lVls�c�,lŝ�ĉ�

note that here we are defining di�erent links for forward and backwards,
they are not simply the conjugate of each other (because of the di�erent spin
projection between the two). Also note that these e�ective link matrices have
also a spin index, this is because the vectors used to define the V rotation
matrices have spin dependence now. In this form we can now write down the
coarse Dirac operator as

D̂iŝĉ,jŝ�ĉ� = �
�
�i,k/B�ŝ,s/Bs

⇥ ⇤

µ

⌅
W�µ

ksĉ,ls�ĉ��k+µ,l + W+µ†
ksĉ,ls�ĉ��k�µ,l

⇧ �
�l/B,j�s�/Bs,ŝ�

⇥

+M �iŝĉ,jŝ�ĉ� .

We now finish up by blocking the geometry and spin onto the coarse lattice,
defining the e�ective link matrices Y ±µ that connect sites on the coarse
lattice:

Y ±µ
iŝĉ,jŝ�ĉ� =

�
�i,k/B�ŝ,s/Bs

⇥
W±µ

ksĉ,ls�ĉ�

�
�l/B,j�s�/Bs,ŝ�

⇥
�i⇤µ,j (2)

Xiŝĉ,jŝ�ĉ� =
�
�i,k/B�ŝ,s/Bs

⇥ ⇤

µ

⌅
W�µ

iŝĉ,kŝ�ĉ� + W+µ†
iŝĉ,kŝ�ĉ�

⇧ �
�l/B,j�s�/Bs,ŝ�

⇥
�i,j,

where we note now that the matrix X is not Hermitian. Thus the coarse
operator is written

D̂iŝĉ,jŝ�ĉ� = �
⇤

µ

⌅
Y �µ

iŝĉ,jŝ�ĉ��i+µ,j + Y +µ†
isĉ,js�ĉ��i�µ,j

⇧
+ (M �Xiŝĉ,jŝ�ĉ�) �iŝĉ,jŝ�ĉ� . (3)

For the explicit form of these matrices we refer the reader to Appendix A.
After the first blocking, subsequent blockings require that Bs = 1, i.e., we

cannot block the spin dimension again since we cannot remove the chirality.
Apart from this observation, the next coarse operator will have a similar form
to the current one: it will be a nearest neighbour non-Hermitian operator
connecting sites with ds = 2 spin dimension (in 2d and 4d anyway).

We note here in passing that because of the definition of the matrix field V
include explicit spin dependence, this destroys the tensor product structure
of the spin and colour on the coarse operator, i.e., we have to define an
e�ective link matrix that rotates in spin and colour space. If this were not
the case, i.e., if V were to be spin independent, then this structure would be

8

x
x

x

x−

x−

U x



U
x

μ

μ

ν

!41

 42

X[0]

X[1]

SOURCE OF PARALLELISM

�
a00 a01 a02 a03

�

0

BB@

b0
b1
b2
b3

1

CCA)
�
a00 a01

�✓b0
b1

◆
+

�
a02 a03

�✓b2
b3

◆

x
x

x

x−

x−

U x



U
x

μ

μ

ν

warp 0

x
x

x

x−

x−

U x



U
x

μ

μ

ν warp 1

x
x

x

x−

x−

U x



U
x

μ

μ

ν warp 2

x
x

x

x−

x−

U x



U
x

μ

μ

ν

warp 3

x
x

x

x−

x−

U x



U
x

μ

μ

ν

3. Stencil direction
8-way parallelism

1. Grid parallelism
Volume of threads

2. Link matrix-vector
partitioning
2 Nvec-way parallelism
(spin * color)

0

BB@

c0
c1
c2
c3

1

CCA+ =

0

BB@

a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33

1

CCA

0

BB@

b0
b1
b2
b3

1

CCA
thread y  

index

4. Dot-product partitioning
4-way parallelism

COARSE GRID OPERATOR PERFORMANCE

▪ Autotuner finds optimum
degree of parallelization

▪ Larger grids favor less fine
grained

▪ Coarse grids favor most
fine grained

▪ GPU is nearly always faster
than CPU

▪ Expect in future that coarse
grids will favor CPUs

▪ For now, use GPU exclusively

8-core Haswell 2.4 GHz (solid line) vs M6000 (dashed lined), FP32

0 20 40 60 80 100
2N

0

50

100

150

200

250

300

G
FL

O
PS

2x2x2x2
4x2x2x2
4x2x2x4
4x2x4x4
4x4x4x4

Coarse Dslash performance (8-core Haswell 2.4 GHz vs M6000)
Solid symbol CPU, open symbol / dashed line GPU

!43

!44

Wilson-clover, Strong scaling on Titan (K20X), V = 643x128, mπ = 197 MeV
Ti

m
e

to
 S

ol
ut

io
n

0

10

20

30

40

50

Number of Nodes

32 64 128 256 512

BiCGstab MG

5.5x 10.2x 8.9x 7.4x

MULTIGRID VERSUS BICGSTAB

!45

PRIOR OUTSTANDING ISSUES

• Setup phase partially done on CPU (coarse-link construction and block orthogonalization)
• Prevents use of MG with HMC

• 16-bit precision only supported on fine grid
• Coarse operator more expensive relative to fine grid than it should be

• Strong scaling limitations:
• Use of GCR with modified Gram-Schmidt means reductions dominate (cf Titan scaling breakdown)
• Halo exchange of smoothers limit the strong scaling 

• Memory overhead put limit of V = 323x 16 per P100 for clover solver
• Forces us to strong scale more than we might like

!46

Wilson-clover, Strong scaling on Titan (K20X), V = 643x128, mπ = 197 MeV
Ti

m
e

to
 S

ol
ut

io
n

0

10

20

30

40

50

Number of Nodes

32 64 128 256 512

BiCGstab MG

5.5x 10.2x 8.9x 7.4x

MULTIGRID VERSUS BICGSTAB

Out of
memory

!47

Wilson-clover, Strong scaling on Titan (K20X), V = 643x128, 12 linear solves

Ti
m

e

0

10

20

30

40

50

Number of Nodes

64 128 256 512

level 1 level 2 level 3

MULTIGRID TIMING BREAKDOWN

Limited by halo exchange

Reduction latency limited

0

20

40

60

80

100

120

Po
w

er
 C

os
um

pt
io

n
(W

)

BiCGStab

0 100 200 300 400 500 600
Wallclock Time (sec)

0

20

40

60

80

100

120

Po
w

er
 C

os
um

pt
io

n
(W

)

Multigrid
24850 24900 24950 25000 25050
50

60

70

80

90

Po
w

er
 (w

at
ts

)

!48

POWER EFFICIENCY
BiCGstab average power
~ 83 watts per GPU

MG average power
~ 72 watts per GPU

MG consumes less
power and 10x faster

12x solvesSetup

12x solves

level 1 null space level 2 null spacecoarse grid
construction on CPU

Credit to Don Maxwell @ OLCF 
for helping with Power  
measurements on Titan

!49

HIERARCHICAL ALGORITHMS ON HETEROGENEOUS
ARCHITECTURES

PCIe

GPU

CPU

!50

MULTI-SRC SOLVERS

• Multi-src solvers increase locality through link-field reuse
• Multi-grid operators even more so since link matrices are 48x48

• Coarse Dslash / Prolongator / Restrictor
• Coarsest grids also latency limited

• Kernel level latency
• Network latency

• Multi-src solvers are a solution
• More parallelism
• Bigger messages

G
FL

O
PS

0

200

400

600

800

Number of right hand sides
1 2 4 8 16 32 64 128

2^4 4^4

Coarse dslash on  
M6000 GPU vs #rhs

> 3x speedup

!51

ADAPTIVE GEOMETRIC MULTIGRID

Adaptively find candidate null-space vectors

Dynamically learn the null space and use this to  
define the prolongator

Algorithm is self learning

Setup

1. Set solver to be simple smoother

2. Apply current solver to random vector vi = P(D) ηi

3. If convergence good enough, solver setup complete

4. Construct prolongator using fixed coarsening (1 - P R) vk = 0

➡ Typically use 44 geometric blocks

➡ Preserve chirality when coarsening R = γ5 P† γ5 = P†

5. Construct coarse operator (Dc = R D P)

6. Recurse on coarse problem

7. Set solver to be augmented V-cycle, goto 2

Falgout

Babich et al 2010

see also Inexact Deflation (Lüscher, 2007)
Local coherence = weak approximation theory

!52

THE CHALLENGE OF MULTIGRID ON GPU

GPU requirements very different from CPU
Each thread is slow, but O(10,000) threads per GPU

Fine grids run very efficiently
High parallel throughput problem

Coarse grids are worst possible scenario
More cores than degrees of freedom

Increasingly serial and latency bound

Little’s law (bytes = bandwidth * latency)

Amdahl’s law limiter

Multigrid exposes many of the problems expected at
the Exascale

INGREDIENTS FOR PARALLEL ADAPTIVE MULTIGRID

▪ Multigrid setup
– Block orthogonalization of null space vectors
– Batched QR decomposition

▪ Smoothing (relaxation on a given grid)
– Repurpose existing solvers

▪ Prolongation
– interpolation from coarse grid to fine grid
– one-to-many mapping

▪ Restriction
– restriction from fine grid to coarse grid
– many-to-one mapping

▪ Coarse Operator construction (setup)
– Evaluate R A P locally
– Batched (small) dense matrix multiplication

▪ Coarse grid solver
– Need optimal coarse-grid operator

x
x

x

x−

x−

U x



U
x

μ

μ

ν

x x

x

x−

x−

U x



U
x

μ

μ

ν

!53

COARSE GRID OPERATOR

▪ Coarse operator looks like a Dirac operator (many more colors)
– Link matrices have dimension 2Nv x 2Nv (e.g., 48 x 48)

▪ Fine vs. Coarse grid parallelization
– Fine grid operator has plenty of grid-level parallelism
– E.g., 16x16x16x16 = 65536 lattice sites

– Coarse grid operator has diminishing grid-level parallelism
– first coarse grid 4x4x4x4= 256 lattice sites
– second coarse grid 2x2x2x2 = 16 lattice sites

▪ Current GPUs have up to 3840 processing elements

▪ Need to consider finer-grained parallelization
– Increase parallelism to use all GPU resources
– Load balancing

dofs (geometry). We start by defining the fields

W±µ
ksĉ,ls�ĉ� = V †

ksc,ksĉP
±µ
s,s�U(k+µ)c,lc��k+µ,lVls�c�,lŝ�ĉ�

note that here we are defining di�erent links for forward and backwards,
they are not simply the conjugate of each other (because of the di�erent spin
projection between the two). Also note that these e�ective link matrices have
also a spin index, this is because the vectors used to define the V rotation
matrices have spin dependence now. In this form we can now write down the
coarse Dirac operator as

D̂iŝĉ,jŝ�ĉ� = �
�
�i,k/B�ŝ,s/Bs

⇥ ⇤

µ

⌅
W�µ

ksĉ,ls�ĉ��k+µ,l + W+µ†
ksĉ,ls�ĉ��k�µ,l

⇧ �
�l/B,j�s�/Bs,ŝ�

⇥

+M �iŝĉ,jŝ�ĉ� .

We now finish up by blocking the geometry and spin onto the coarse lattice,
defining the e�ective link matrices Y ±µ that connect sites on the coarse
lattice:

Y ±µ
iŝĉ,jŝ�ĉ� =

�
�i,k/B�ŝ,s/Bs

⇥
W±µ

ksĉ,ls�ĉ�

�
�l/B,j�s�/Bs,ŝ�

⇥
�i⇤µ,j (2)

Xiŝĉ,jŝ�ĉ� =
�
�i,k/B�ŝ,s/Bs

⇥ ⇤

µ

⌅
W�µ

iŝĉ,kŝ�ĉ� + W+µ†
iŝĉ,kŝ�ĉ�

⇧ �
�l/B,j�s�/Bs,ŝ�

⇥
�i,j,

where we note now that the matrix X is not Hermitian. Thus the coarse
operator is written

D̂iŝĉ,jŝ�ĉ� = �
⇤

µ

⌅
Y �µ

iŝĉ,jŝ�ĉ��i+µ,j + Y +µ†
isĉ,js�ĉ��i�µ,j

⇧
+ (M �Xiŝĉ,jŝ�ĉ�) �iŝĉ,jŝ�ĉ� . (3)

For the explicit form of these matrices we refer the reader to Appendix A.
After the first blocking, subsequent blockings require that Bs = 1, i.e., we

cannot block the spin dimension again since we cannot remove the chirality.
Apart from this observation, the next coarse operator will have a similar form
to the current one: it will be a nearest neighbour non-Hermitian operator
connecting sites with ds = 2 spin dimension (in 2d and 4d anyway).

We note here in passing that because of the definition of the matrix field V
include explicit spin dependence, this destroys the tensor product structure
of the spin and colour on the coarse operator, i.e., we have to define an
e�ective link matrix that rotates in spin and colour space. If this were not
the case, i.e., if V were to be spin independent, then this structure would be

8

x
x

x

x−

x−

U x



U
x

μ

μ

ν

!54

 55

X[0]

X[1]

SOURCE OF PARALLELISM

�
a00 a01 a02 a03

�

0

BB@

b0
b1
b2
b3

1

CCA)
�
a00 a01

�✓b0
b1

◆
+

�
a02 a03

�✓b2
b3

◆

x
x

x

x−

x−

U x



U
x

μ

μ

ν

warp 0

x
x

x

x−

x−

U x



U
x

μ

μ

ν warp 1

x
x

x

x−

x−

U x



U
x

μ

μ

ν warp 2

x
x

x

x−

x−

U x



U
x

μ

μ

ν

warp 3

x
x

x

x−

x−

U x



U
x

μ

μ

ν

3. Stencil direction
8-way thread parallelism

1. Grid parallelism
Volume of threads

2. Link matrix-vector
partitioning
2 Nvec-way thread parallelism
(spin * color)

0

BB@

c0
c1
c2
c3

1

CCA+ =

0

BB@

a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33

1

CCA

0

BB@

b0
b1
b2
b3

1

CCA
thread y  

index

4. Dot-product partitioning
4-way thread parallelism + ILP

!56

COARSE GRID OPERATOR PERFORMANCE
Tesla K20X (Titan), FP32, Nvec = 24

0"

20"

40"

60"

80"

100"

120"

140"

160"

10" 8" 6" 4" 2"

GF
LO

PS
'

La)ce'length'

baseline"

color2spin"

dimension"+"direc7on"

dot"product"

24,576-way parallel

16-way parallel

COARSE GRID OPERATOR PERFORMANCE

▪ Autotuner finds optimum
degree of parallelization

▪ Larger grids favor less fine
grained

▪ Coarse grids favor most
fine grained

▪ GPU is nearly always faster
than CPU

▪ Expect in future that coarse
grids will favor CPUs

▪ For now, use GPU exclusively

8-core Haswell 2.4 GHz (solid line) vs M6000 (dashed lined), FP32

0 20 40 60 80 100
2N

0

50

100

150

200

250

300

G
FL

O
PS

2x2x2x2
4x2x2x2
4x2x2x4
4x2x4x4
4x4x4x4

Coarse Dslash performance (8-core Haswell 2.4 GHz vs M6000)
Solid symbol CPU, open symbol / dashed line GPU

!57

!58

IMPROVING STRONG SCALING

fine-grained  
parallelization  
of ghost packer

fuse memcpys to  
reduce latency

!59

IMPROVING STRONG SCALING
Vcoarse = 44, 8-way communication, FP32, Quadro M6000

G
FL

O
PS

0

75

150

225

300

Nv=4 Nv=8 Nv=12 Nv=16 Nv=20 Nv=24

no comms naive comms
fine-grained pack fine-grained pack + fused copy
no comms + split gather fine-grained pack + fused copy + split gather
no comms + split column split column

!60

GPU DIRECT RDMA

QUDA now has first-class support for GPU Direct RDMA
Direct GPU <-> NIC communication on systems that support it
Dramatic improvement in inter-node scaling

G
FL

O
PS

0

500

1000

1500

2000

Number of GPUs
1 2 4 8 16 32 64

double (p2p)
single (p2p)
half (p2p)

G
FL

O
PS

0

500

1000

1500

2000

Number of GPUs

1 2 4 8 16 32 64

double (gdr)
single (gdr)
half (gdr)

without GDR with GDR

244 per GPU weak scaling on Saturn V

1000

2000

4000

8000

4 8 16 32 64

A
gg

re
ga

te
 G

FL
O

PS

Number of GPUS

CG Multi-shift CG (10 shifts)

48396 strong scaling on Saturn V (DP)

!61

DOMAIN-DECOMPOSITION SMOOTHERS

Domain-decomposition smoothers are effective smoothers for QCD MG (Frommer et al)

QUDA now has support for both additive and multiplicative Schwarz smoothing
Enable at any level and / or combine with even/odd preconditioning at any level

Dramatic reduction in communication important on systems with weak networks
E.g., Piz Daint vs. Saturn V

Domain Decomposition method on GPU cluster Yusuke Osaki

Figure 1: Lattice domain-decomposition and relation to the RAS iteration.

ditioner and study the bottleneck by investigating the timing chart of the algorithm. The results are
shown in section 5 and we give a brief summary for the results in the last section.

2. The Restricted Additive Schwarz domain-decomposition iteration

The restricted additive Schwarz iteration [6] is a kind of the fixed iteration solver for elliptic
differential equations. This solver makes use of the geometrical structure of a latticized partial
difference equation. In lattice QCD the discretized space-time can be split into several domains and
we show the schematic picture of the decomposition in Fig.1. Ωi represents the lattice sites in the
i-th domain without overlapping. Ω′

i denotes the domain extended from Ωi. The extended domains
are overlapped in general and the data in overlapped region are replicated on the neighbouring
domains.

To solve Eq. (1.1) without domain overlapping, we expect that the solution φ can be approxi-
mated by combining the partial solution of ξΩi derived fromDΩiξΩi =ηΩi from each domain, where
DΩi is the restriction of D to Ωi with the Dirichlet boundary condition. The additive Schwarz (AS)
iteration simply approximates it as φ ∼ ∑i ξΩi , and the approximation is refined by the Richardson
iteration. A problem arises when we overlap the decomposition since the approximate solution
derived from the extended equation DΩ′

i
ξΩ′

i
= ηΩ′

i
becomes inconsistent in the overlapped region.

The restricted additive Schwarz (RAS) iteration gives a simple solution to this inconsistency. In
Fig.1 we denote the restriction operation as RΩi arrow which simply extracts the data on the bulk
sites (Ωi ∈ Ω′

i) to avoid the inconsistency. Thus the approximation to φ can be constructed as
φ ∼ ∑i RΩiξΩ′

i
. We show the RAS iteration in Alg. 1. The fourth line pickups the data on Ω′

i from
the whole field vector, the fifth line solves the target problem restricted in the overlapped domainΩ′

i
with the Dirichlet boundary condition, and the next line represents the restriction process described
above.

The RAS iteration itself is not sufficient for the complete solver, and is usually used as the
preconditioner for the Krylov subspace iterative solvers. We employ BiCGStab solver for the
Krylov subspace solver. The RAS preconditioner KRAS corresponds to the following operator;

KRAS = S
NRAS−1

∑
j=0

(1−DS) j, with S=
N

∑
i=1

RΩi(D
−1
Ω′
i
)PΩ′

i
. (2.1)

This is applied to the following preconditioned equation;

DKRASχ = η , φ = KRASχ , (2.2)

3

figure taken from Osaki and Ishikawa

!62

INITIAL SCHWARZ RESULTS
Twisted-clover, V = 323x64, κ = 0.1372938, csw = 1.57551, µ = 0.006, Piz Daint  

Additive Schwarz smoother

It
er

at
io

ns

20

21

22

23

24

Number of GPUs

2 4 8 16

GCR-MG GCR-MG-DD

Ti
m

e

0.1

1

10

100

Number of GPUs

2 4 8 16

CG GCR-MG GCR-MG-DD

!63

MULTIGRID AT THE EXASCALE

Machine Titan Summit Summit++

Volume 643x128 1283x256 2563x512

1st coarse grid 163x32 323x64 643x128

2nd coarse grid 83x16 163x32 323x64

3rd coarse grid 83x16 163x32

3rd coarse grid 83x16

Computers are getting wider not faster
Increasing the problem size means running on more cores
Coarse grids will be running on subset of the nodes at same speed

Multigrid reverts to N log N

!64

MULTIGRID (HMC) AT THE EXASCALE

Communication reducing algorithms more critical than ever
Memory traffic
Latency and synchronization

Acceleration of coarse grid solves ever more critical

Heterogeneous multigrid

Task mixing?

!65

HIERARCHICAL ALGORITHMS ON HETEROGENEOUS
ARCHITECTURES

PCIe

GPU

CPU

!66

MULTI-SRC SOLVERS

• Multi-src solvers increase locality through link-field reuse
• Multi-grid operators even more so since link matrices are 48x48

• Coarse Dslash / Prolongator / Restrictor
• Coarsest grids also latency limited

• Kernel level latency
• Network latency

• Multi-src solvers are a solution
• More parallelism
• Bigger messages

G
FL

O
PS

0

200

400

600

800

Number of right hand sides
1 2 4 8 16 32 64 128

2^4 4^4

Coarse dslash on  
M6000 GPU vs #rhs

> 3x speedup

!67

16-BIT FIXED-POINT FOR COARSE GRIDS

QUDA uses 16-bit precision as a memory traffic reduction strategy

Computation always done in FP32

Actually uses “block float” format
Uses 16-bit fixed point per grid point with single float to normalize
CG / BiCGStab has ~10% hit in iteration count for overall ~1.7x speedup vs FP32

Initial implementation of Multigrid did not support 16-bit precision on coarse grids
Was not immediately obvious how to marry block float with fine-grain parallelization
FP16 a possibility, but range is limiting

!68

16-BIT FIXED-POINT FOR COARSE GRIDS

Solution is simple: use global fixed point
➡ null-space vectors
➡ coarse-link construction temporaries
➡ coarse-link matrices

Leave vector fields in FP32 since coarse operator is never bound by vector-field traffic

estimate max element to set scale, 
e.g., |U V|max ~ |U|max |V|max

already block orthonormal

!69

 /**
 Calculates the matrix UV^{s,c'}_mu(x) = \sum_c U^{c}_mu(x) * V^{s,c}_mu(x+mu)
 Where: mu = dir, s = fine spin, c' = coarse color, c = fine color
 */
 template<bool from_coarse, typename Float, int dim, QudaDirection dir, int fineSpin, int fineColor,
 int coarseSpin, int coarseColor, typename Wtype, typename Arg>
 __device__ __host__ inline void computeUV(Arg &arg, const Wtype &W, int parity, int x_cb, int ic_c) {

 int coord[5];
 coord[4] = 0;
 getCoords(coord, x_cb, arg.x_size, parity);

 complex<Float> UV[fineSpin][fineColor];

 for(int s = 0; s < fineSpin; s++) {
 for(int c = 0; c < fineColor; c++) {
 UV[s][c] = static_cast<Float>(0.0);
 }
 }

 if (arg.comm_dim[dim] && (coord[dim] + 1 >= arg.x_size[dim])) {
 int nFace = 1;
 int ghost_idx = ghostFaceIndex<1>(coord, arg.x_size, dim, nFace);

 for(int s = 0; s < fineSpin; s++) { //Fine Spin
 for(int ic = 0; ic < fineColor; ic++) { //Fine Color rows of gauge field
 for(int jc = 0; jc < fineColor; jc++) { //Fine Color columns of gauge field
 UV[s][ic] += arg.U(dim, parity, x_cb, ic, jc) * W.Ghost(dim, 1, (parity+1)&1, ghost_idx, s, jc, ic_c);
 }
 }
 }

 } else {
 int y_cb = linkIndexP1(coord, arg.x_size, dim);

 for(int s = 0; s < fineSpin; s++) { //Fine Spin
 for(int ic = 0; ic < fineColor; ic++) { //Fine Color rows of gauge field
 for(int jc = 0; jc < fineColor; jc++) { //Fine Color columns of gauge field
 UV[s][ic] += arg.U(dim, parity, x_cb, ic, jc) * W((parity+1)&1, y_cb, s, jc, ic_c);
 }
 }
 }
 }

 for(int s = 0; s < fineSpin; s++) {
 for(int c = 0; c < fineColor; c++) {
 arg.UV(parity,x_cb,s,c,ic_c) = UV[s][c];
 }
 }

 } // computeUV

WRITING ALGORITHMS
IN FIXED POINT

Apply gauge field to set of null-
space vectors
(Single precision variant)

Let’s see what changes to for 16-
bit variant

!70

 /**
 Calculates the matrix UV^{s,c'}_mu(x) = \sum_c U^{c}_mu(x) * V^{s,c}_mu(x+mu)
 Where: mu = dir, s = fine spin, c' = coarse color, c = fine color
 */
 template<bool from_coarse, typename Float, int dim, QudaDirection dir, int fineSpin, int fineColor,
 int coarseSpin, int coarseColor, typename Wtype, typename Arg>
 __device__ __host__ inline void computeUV(Arg &arg, const Wtype &W, int parity, int x_cb, int ic_c) {

 int coord[5];
 coord[4] = 0;
 getCoords(coord, x_cb, arg.x_size, parity);

 complex<Float> UV[fineSpin][fineColor];

 for(int s = 0; s < fineSpin; s++) {
 for(int c = 0; c < fineColor; c++) {
 UV[s][c] = static_cast<Float>(0.0);
 }
 }

 if (arg.comm_dim[dim] && (coord[dim] + 1 >= arg.x_size[dim])) {
 int nFace = 1;
 int ghost_idx = ghostFaceIndex<1>(coord, arg.x_size, dim, nFace);

 for(int s = 0; s < fineSpin; s++) { //Fine Spin
 for(int ic = 0; ic < fineColor; ic++) { //Fine Color rows of gauge field
 for(int jc = 0; jc < fineColor; jc++) { //Fine Color columns of gauge field
 UV[s][ic] += arg.U(dim, parity, x_cb, ic, jc) * W.Ghost(dim, 1, (parity+1)&1, ghost_idx, s, jc, ic_c);
 }
 }
 }

 } else {
 int y_cb = linkIndexP1(coord, arg.x_size, dim);

 for(int s = 0; s < fineSpin; s++) { //Fine Spin
 for(int ic = 0; ic < fineColor; ic++) { //Fine Color rows of gauge field
 for(int jc = 0; jc < fineColor; jc++) { //Fine Color columns of gauge field
 UV[s][ic] += arg.U(dim, parity, x_cb, ic, jc) * W((parity+1)&1, y_cb, s, jc, ic_c);
 }
 }
 }
 }

 for(int s = 0; s < fineSpin; s++) {
 for(int c = 0; c < fineColor; c++) {
 arg.UV(parity,x_cb,s,c,ic_c) = UV[s][c];
 }
 }

 } // computeUV

WRITING ALGORITHMS
IN FIXED POINT

Apply gauge field to set of null-
space vectors
(Fixed-point variant)

All fixed-point <-> float conversion
hidden in QUDA-field accessors

No changes to any kernel code
Set scale of field prior to writing
to it, then all read/write access
is opaque

 /**
 * Read-only complex-member accessor function. The last
 * parameter n is only used for indexed into the packed
 * null-space vectors.
 * @param x 1-d checkerboard site index
 * @param s spin index
 * @param c color index
 * @param v vector number
 */
 __device__ __host__ inline const complex<Float> operator()
 (int parity, int x_cb, int s, int c, int n=0) const
 {
 complex<short> tmp = v[accessor.index(parity,x_cb,s,c,n)];
 return scale_inv*complex<Float>(static_cast<Float>(tmp.x),
 static_cast<Float>(tmp.y));
 }

 /**
 @brief Assignment operator with complex number instance as input
 @param a Complex number we want to store in this accessor
 */
 __device__ __host__ inline void operator=(const complex<Float> &a) {
 if (!fixed) { // not fixed point
 v[idx] = complex<storeFloat>(a.x, a.y);
 } else { // we need to scale and then round
 v[idx] = complex<storeFloat>(round(scale * a.x), round(scale * a.y));
 }
 } !71

 /**
 Calculates the matrix UV^{s,c'}_mu(x) = \sum_c U^{c}_mu(x) * V^{s,c}_mu(x+mu)
 Where: mu = dir, s = fine spin, c' = coarse color, c = fine color
 */
 template<bool from_coarse, typename Float, int dim, QudaDirection dir, int fineSpin, int fineColor,
 int coarseSpin, int coarseColor, typename Wtype, typename Arg>
 __device__ __host__ inline void computeUV(Arg &arg, const Wtype &W, int parity, int x_cb, int ic_c) {

 int coord[5];
 coord[4] = 0;
 getCoords(coord, x_cb, arg.x_size, parity);

 complex<Float> UV[fineSpin][fineColor];

 for(int s = 0; s < fineSpin; s++) {
 for(int c = 0; c < fineColor; c++) {
 UV[s][c] = static_cast<Float>(0.0);
 }
 }

 if (arg.comm_dim[dim] && (coord[dim] + 1 >= arg.x_size[dim])) {
 int nFace = 1;
 int ghost_idx = ghostFaceIndex<1>(coord, arg.x_size, dim, nFace);

 for(int s = 0; s < fineSpin; s++) { //Fine Spin
 for(int ic = 0; ic < fineColor; ic++) { //Fine Color rows of gauge field
 for(int jc = 0; jc < fineColor; jc++) { //Fine Color columns of gauge field
 UV[s][ic] += arg.U(dim, parity, x_cb, ic, jc) * W.Ghost(dim, 1, (parity+1)&1, ghost_idx, s, jc, ic_c);
 }
 }
 }

 } else {
 int y_cb = linkIndexP1(coord, arg.x_size, dim);

 for(int s = 0; s < fineSpin; s++) { //Fine Spin
 for(int ic = 0; ic < fineColor; ic++) { //Fine Color rows of gauge field
 for(int jc = 0; jc < fineColor; jc++) { //Fine Color columns of gauge field
 UV[s][ic] += arg.U(dim, parity, x_cb, ic, jc) * W((parity+1)&1, y_cb, s, jc, ic_c);
 }
 }
 }
 }

 for(int s = 0; s < fineSpin; s++) {
 for(int c = 0; c < fineColor; c++) {
 arg.UV(parity,x_cb,s,c,ic_c) = UV[s][c];
 }
 }

 } // computeUV

WRITING ALGORITHMS
IN FIXED POINT

!72

16-BIT FIXED-POINT FOR COARSE GRIDS

16-bit is like running with a new GPU!

Coarse-link setup kernels 1.8x faster

Restriction and Prolongation 1.8x faster

33% reduction in peak memory

Absolutely zero effect on multigrid
convergence

G
FL

O
PS

0

225

450

675

900

Lattice length

2 4 6 8 10

Kepler Maxwell Pascal Volta Pascal (16-bit)

Coarse Dslash Performance (single GPU)

!73

BLOCK ORTHOGONALIZATION

Forms the block orthonormal basis upon
which we construct the coarse grid

QR on the set of null-space vectors
within each multigrid aggregate

Assign each multigrid aggregate to a
CUDA thread block

All reductions are therefore local to
a CUDA thread block
Do the full block orthonormalization
in a single kernel

Minimizes total memory traffic

Q
C

D
 o

n
G

PU
s

What is a GPU?
• Kepler K20X (2012)
– 2688 processing cores
– 3995 SP Gflops peak

• Effective SIMD width of 32 threads (warp)
• Deep memory hierarchy
• As we move away from registers
– Bandwidth decreases
– Latency increases

• Programmed using a thread model
– Architecture abstraction is known as CUDA
– Fine-grained parallelism required

• Diversity of programming languages
– CUDA C/C++/Fortran
– OpenACC, OpenMP 4.0
– Python, etc.

Device MemoryDevice Memory

Multiprocessor 1

Core
1

Core
2

Core
32

 . . .

Multiprocessor 2

Core
1

Core
2

Core
32

 . . .

Multiprocessor n

Core
1

Core
2

Core
32

 . . .

 . . .

RegistersRegisters RegistersRegisters RegistersRegisters

177 GB/s

 1.345 TB/s

L2 CacheL2 Cache

Sh
Mem

Sh
Mem

 10.76 TB/s

TexTex Sh
Mem

Sh
Mem TexTex Sh

Mem

Sh
Mem TexTexL1 L1 L1

Host MemoryHost Memory

8.0 GB/s per directionPCIe

 280 GB/s

O
n

 c
h

ip
O

ff
 c

h
ip

250 GB/s

500 GB/s

2.5 TB/s

2.5 TB/s

192 192 192192 192 192

720 GB/s

2 TB/s

10 TB/s

n
ve

ct
or

s

Ti
m

e
to

 s
ol

ut
io

n

0.1

1

10

100

Mass parameter

-0.42 -0.415 -0.410 -0.405 -0.40

BiCGstab (2016, 3xM6000, double-half)
GCR-MG (2016, 3xM6000, double-single)
BiCGStab (2017, 2xP100, double-half)
GCR-MG (2017, 2xP100, double-single-half)

Wilson, V = 243x64, single workstation
MULTIGRID VERSUS BICGSTAB

!74

heavy
speedup

 light
speedup

2016 1.1x 8.2x

2017 1.5x 10.7x

!75

COARSE-LINK CONSTRUCTION

Recipe
1.Compute required intermediate  
 Multi-RHS matrix-vector => matrix-matrix operation 
 High efficiency on parallel architectures 

2.Compute coarse link matrix  
 Naive intermediate has fine-grid geometry and coarse-grid degrees of freedom  
 E.g., 164 fine grid with 48 degrees of freedom per site => ~18 GB per direction 

3.Sum contribution to or as needed

V †P+T

T = UA�1V

Y X

!76

COARSE-LINK CONSTRUCTION

Recipe
1.Compute required intermediate  
 Multi-RHS matrix-vector => matrix-matrix operation 
 High efficiency on parallel architectures 

2.Compute coarse link matrix  
 
 

3.Sum contribution to or as needed

V †P+T

T = UA�1V

Y X

Need a single fused computation to avoid intermediate

!77

COARSE-LINK CONSTRUCTION

Employ fine-grained parallelization
• fine-grid geometry
• coarse-grid color

Each thread computes its assigned matrix elements

Atomically update the relevant coarse link field
depending on thread location

Finally, neighbour exchange boundary link elements

X =
X

Y =
X

!78

RESULTS

0 5000 10000 15000 20000 25000 30000
0

50

100

150

200

250

Po
w

er
 D

ra
w

 (w
at

ts
)

8x solvesSetup

level 1 null space level 2 null space

coarse grid
construction on CPU

25000 26000 27000 28000
0

50

100

150

200

250

Po
w

er
 D

ra
w

 (w
at

ts
)

level 1 null space level 2 null space

coarse grid
construction on GPU

8x solvesSetup

10%

78%

12%

Block Ortho Coarse-link Other

96%

3%
1%

Block Ortho Coarse-link Other

Null-space finding now dominates the setup process

Coarse-link construction runs at ~0.5-1 TFLOPS (P100)

Further factor of 2-3x improvement available if needed

