Hypercubic effects in semileptonic decays of heavy mesons, toward $\mathrm{B} \rightarrow \pi \ell \vee$ with $\mathrm{Nf}=2+1+1$ Twisted fermions

Lorenzo Riggio
INFN, Università di Roma Tre
V. Lubicz, L. Riggio, G. Salerno, S. Simula, C. Tarantino

Motivation

The hadronic contribution to the $\mathrm{B} \rightarrow \pi$ semileptonic decay rate is regulated by the vector and scalar form factors f_{0} and f_{+}which are function of q^{2}

Decay rate in the SM

$$
\begin{aligned}
& \frac{d \Gamma}{d q^{2}}=\frac{G_{F}^{2}\left|V_{u b}\right|^{2}}{24 \pi^{3}} \frac{\left(q^{2}-m_{\ell}^{2}\right)^{2}\left|\vec{p}_{\pi}\right|}{q^{4} M_{B}^{2}} \times \\
& \quad \times\left[\left(1+\frac{m_{\ell}^{2}}{2 q^{2}}\right) M_{B}^{2}\left|\vec{p}_{\pi}\right|^{2}\left|f_{+}^{B \pi}\left(q^{2}\right)\right|^{2}+\frac{3 m_{\ell}^{2}}{8 q^{2}}\left(M_{B}^{2}-M_{\pi}^{2}\right)^{2}\left|f_{0}^{B \pi}\left(q^{2}\right)\right|^{2}\right]
\end{aligned}
$$

Motivation

In [Phys. Rev. D96 (2017) 054514] we found evidence of the breaking of Lorentz Symmetry due to hypercubic effects in the vector and scalar form factors of both the $D \rightarrow \pi$ and $D \rightarrow K$ semileptonic transitions

In [arXiv:1803.04807] we observed a similar breaking of Lorentz Symmetry in the tensor form factor of the same transitions

These effects may be relevant when we move to B-physics and have to be under control

motivation for this analysis:

\checkmark An exploratory study toward $B \rightarrow \pi$
\downarrow Gain a better understanding on the relevance of these effects as the mass of the father meson increases

Simulation Details

Details of the ensembles used in this $N_{f}=2+1+1$ analysis

ensemble	β	V / a^{4}	$a \mu_{\text {sea }}=a \mu_{\ell}$	$a \mu_{s}$	$a \mu_{c}$	$a \mu_{h}$	$M_{\pi}(\mathrm{MeV})$	$L(\mathrm{fm})$	$M_{\pi} L$
A30.32	1.90	$32^{3} \times 64$	0.0030	$\begin{gathered} \hline\{0.0180, \\ 0.0220, \\ 0.0260\} \end{gathered}$	$\begin{gathered} \hline\{0.21256, \\ 0.25000, \\ 0.29404\} \end{gathered}$	$\begin{gathered} \hline\{0.34583,0.40675, \\ 0.47840,0.56267, \\ 0.66178,0.77836, \\ 0.91546,1.07672\} \end{gathered}$	275	2.84	3.96
A40.32			0.0040				315		4.53
A50.32			0.0050				351		5.04
A40.24		$24^{3} \times 48$	0.0040				324	2.13	3.49
A60.24			0.0060				386		4.17
A80.24			0.0080				444		4.79
A100.24			0.0100				495		5.34
B25.32	1.95	$32^{3} \times 64$	0.0025	$\begin{aligned} & \hline\{0.0155, \\ & 0.0190 \\ & 0.0225\} \end{aligned}$	$\begin{gathered} \hline\{0.18705, \\ 0.22000, \\ 0.25875\} \end{gathered}$	$\begin{gathered} \hline\{0.30433,0.35794, \\ 0.42099,0.49515 \\ 0.58237,0.68495 \\ 0.80561,0.94752\} \end{gathered}$	258	2.61	3.42
B35.32			0.0035				302		3.99
B55.32			0.0055				375		4.96
B75.32			0.0075				436		5.77
B85.24		$24^{3} \times 48$	0.0085				467	1.96	4.63
D15.48	2.10	$48^{3} \times 96$	0.0015	\{0.0123,	\{0.14454,	\{0.23517, 0.27659,	220	2.97	3.31
D20.48			0.0020	0.0150,	0.17000,	0.32531, 0.38262,	254		3.83
D30.48			0.0030	$0.0177\}$	$0.19995\}$	0.45001, 0.52928,	308		4.65
						$0.62252,0.73217\}$			

Three values of the lattice spacing: $0.06 \mathrm{fm} \div 0.09 \mathrm{fm}$ Different volumes: $2 \mathrm{fm} \div 3 \mathrm{fm}$

Pion masses in range $220 \div 440 \mathrm{MeV}$
heavy quark masses in range $1.5 \div 2.5 \mathrm{mc}_{\mathrm{c}}$

Lattice Spacings	
$\mathrm{a}(\beta=1.90)$	$0.0885(36) \mathrm{fm}$
$\mathrm{a}(\beta=1.95)$	$0.0815(30) \mathrm{fm}$
$\mathrm{a}(\beta=2.10)$	$0.0619(18) \mathrm{fm}$

Simulation Details

To inject momenta we used non-periodic boundary conditions

β	V / a^{4}		θ	
1.90	$32^{3} \times 64$	0.0,	± 0.200,	± 0.467,
	$24^{3} \times 48$	0.0,	± 0.867	
	$32^{3} \times 64$	0.0,	± 0.183,	± 0.350,
	± 0.650			
243	± 0.427,	± 0.794		
2.10	$48^{3} \times 96$	0.0,	± 0.212,	± 0.493,

$$
\vec{p}_{D^{\prime}}=\frac{2 \pi}{L} \vec{\theta}_{1} \quad \vec{p}_{P}=\frac{2 \pi}{L} \vec{\theta}_{2}
$$

$$
\vec{\theta}=\theta(1,1,1)
$$

$$
p=(0, \pm 151, \pm 353, \pm 656) \mathrm{MeV}
$$

Momentum range up to $0 \div 650 \mathrm{MeV}$
Both the D ' and the π mesons can be either moving or at rest

Matrix Elements Extraction

The matrix elements $\mathrm{V}_{0}, \mathrm{~V}_{\mathrm{i}}$ and S can be extracted for each ensemble and for different values of q^{2} fitting the time dependence of ratios of 3 -points and 2 -points correlation functions

3-pts functions

$$
C_{\widehat{\Gamma}}^{D^{\prime} \pi}\left(t, t^{\prime}, \vec{p}_{D^{\prime}}, \vec{p}_{\pi}\right) \xrightarrow[t \gg a,\left(t^{\prime}-t\right) \gg a]{ } \frac{Z_{\pi} Z_{D^{\prime}}^{*}}{4 E_{\pi} E_{D^{\prime}}}\left\langle\pi\left(p_{\pi}\right)\right| \widehat{\Gamma}\left|D^{\prime}\left(p_{D^{\prime}}\right)\right\rangle e^{-E_{D^{\prime}} t} e^{-E_{\pi}\left(t^{\prime}-t\right)}
$$

2-pts functions

$$
\begin{aligned}
& C_{2}(t, \vec{p})=\xrightarrow[t \gg a]{ } \frac{Z}{2 E_{0}}\left(e^{-E_{0} t}+e^{-E_{0}(T-t)}\right) \\
& \tilde{C}_{2}(t, \vec{p})=\frac{1}{2}\left[C_{2}(t, \vec{p})+\sqrt{C_{2}^{D}(t, \vec{p})^{2}-C_{2}^{D}(T / 2, \vec{p})^{2}}\right] \xrightarrow[t \gg a]{\longrightarrow} \frac{Z}{2 E_{0}} e^{-E_{0} t}
\end{aligned}
$$

Ratios

$$
\begin{aligned}
& \left.R_{\mu}\left(t, \vec{p}_{D^{\prime}}, \vec{p}_{\pi}\right) \equiv 4 p_{D^{\prime} \mu} p_{\pi \mu} \frac{C_{V_{\mu}}^{D^{\prime} \pi}\left(t, t^{\prime}, \vec{p}_{D^{\prime}}, \vec{p}_{\pi}\right) C_{V_{\mu}}^{\pi D^{\prime}}\left(t, t^{\prime}, \vec{p}_{\pi}, \vec{p}_{D^{\prime}}\right)}{C_{V_{\mu}}^{\pi}\left(t, t^{\prime}, \vec{p}_{\pi}, \vec{p}_{\pi}\right) C_{V_{\mu}^{\prime}}^{D^{\prime}}\left(t, t^{\prime}, \vec{p}_{D^{\prime}}, \vec{p}_{D^{\prime}}\right)} \xrightarrow[t \gg a\left(t^{\prime}-t\right) \gg a]{ }\left|\left\langle\pi\left(p_{\pi}\right)\right| \widehat{V}_{\mu}\right| D^{\prime}\left(p_{D^{\prime}}\right)\right\rangle\left.\right|^{2} \\
& \left.R_{S}\left(t, \vec{p}_{D^{\prime}}, \vec{p}_{\pi}\right) \equiv 4 E_{D^{\prime}} E_{\pi} \frac{C_{S}^{D^{\prime} \pi}\left(t, t^{\prime}, \vec{p}_{D^{\prime}}, \vec{p}_{\pi}\right) C_{S}^{\pi D^{\prime}}\left(t, t^{\prime}, \vec{p}_{\pi}, \vec{p}_{D^{\prime}}\right)}{\widetilde{C}_{2}^{D^{\prime}}\left(t^{\prime}, \vec{p}_{D^{\prime}}\right) \widetilde{C}_{2}^{\pi}\left(t^{\prime}, \vec{p}_{\pi}\right)}, \xrightarrow[t \gg a\left(t^{\prime}-t\right) \gg a]{ }\left|\left\langle\pi\left(p_{\pi}\right)\right| S\right| D^{\prime}\left(p_{D^{\prime}}\right)\right\rangle\left.\right|^{2}
\end{aligned}
$$

Matrix Elements Plateaux

Example of the time dependence of the ratio R and the extraction of the matrix elements

Ensemble D20.48

fit intervals:

β	V / a^{4}	$\left[t_{\min }, t_{\max }\right]_{(\ell \ell, \ell)} / a$	$\left[t_{\min }, t_{\max }\right]_{(\ell c)} / a$	$\left[t_{\min }, t_{\max }\right]_{(\ell h)} / a$	t^{\prime} / a
1.90	$32^{3} \times 64$	$[12,31]$	$[8,16]$	$[8,13]$	18
	$24^{3} \times 48$	$[12,23]$	$[8,17]$	$[8,14]$	18
1.95	$32^{3} \times 64$	$[13,31]$	$[9,18]$	$[10,16]$	20
	$24^{3} \times 48$	$[13,23]$	$[9,18]$	$[10,16]$	20
2.10	$48^{3} \times 96$	$[18,40]$	$[12,26]$	$[13,24]$	26

$$
\begin{gathered}
\mathrm{P}_{\mathrm{D}}=-151 \mathrm{MeV} \\
\mathrm{P}_{\pi}=151 \mathrm{MeV} \\
\mathrm{M}_{\pi}=254 \mathrm{MeV} \\
\mathrm{M}_{\mathrm{D}^{\prime}}=2441 \mathrm{MeV} \\
\hline
\end{gathered}
$$

$$
\begin{gathered}
\mathrm{P}_{\mathrm{D}}=-151 \mathrm{MeV} \\
\mathrm{P}_{\pi}=151 \mathrm{MeV} \\
\mathrm{M}_{\pi}=254 \mathrm{MeV} \\
\mathrm{M}_{\mathrm{D}^{\prime}}=3736 \mathrm{MeV} \\
\hline
\end{gathered}
$$

From Matrix Elements To Form Factors

Using both matrix elements we over-constrain f_{0} and f_{+}and we get the determination of the form factors on each ensemble for the different values of q^{2} from a combined fit

$$
\begin{aligned}
\left\langle\widehat{V}_{0}\right\rangle_{\text {imp }} & =\left(E_{D^{\prime}}+E_{\pi}\right) f_{+}\left(q^{2}\right)+\left(E_{D^{\prime}}-E_{\pi}\right) \frac{M_{D^{\prime}}^{2}-M_{\pi}^{2}}{q^{2}}\left[f_{0}\left(q^{2}\right)-f_{+}\left(q^{2}\right)\right]+\mathcal{O}\left(a^{2}\right) \\
\left\langle\widehat{V}_{\text {sp }}\right\rangle_{\text {imp }} & =\left\{\left(p_{D^{\prime}}+p_{\pi}\right) f_{+}\left(q^{2}\right)+\left(p_{D^{\prime}}-p_{\pi}\right) \frac{M_{D^{\prime}}^{2}-M_{\pi}^{2}}{q^{2}}\left[f_{0}\left(q^{2}\right)-f_{+}\left(q^{2}\right)\right]\right\}+\mathcal{O}\left(a^{2}\right) \\
\langle S\rangle_{\text {imp }} & =\frac{M_{D^{\prime}}^{2}-M_{\pi}^{2}}{\mu_{h}-\mu_{q}} f_{0}\left(q^{2}\right)+\mathcal{O}\left(a^{2}\right)
\end{aligned}
$$

Evidence Of Hypercubic Effects

Hypercubic effects: breaking of the Lorentz invariance

\downarrow Form factors are not function of q^{2} only. We need to estimate and subtract these effects We need a global fit

Elastic Form Factor

Hypercubic effects seem to disappear in the $M_{1}=M_{2}$ limit

Evidence Of Hypercubic Effects

Is this getting worst as the meson gets heavier?

Global Fit

 extract the physical form factors

ingredients:

\downarrow the matrix elements are decomposed in a Lorentz-covariant part + a Lorentzbreaking Hypercubic part proportional to a^{2}
\downarrow Lorentz-breaking part must transform properly under hypercubic rotation
\downarrow Lorentz-breaking part will contain additional form factors
\downarrow The physical form factors will be described with modified z-expansion

Global Fit

Hypercubic effects

$\underline{V_{\mu}}$ matrix elements decompositions

$$
\begin{aligned}
& \left\langle\pi\left(p_{\pi}\right)\right| \widehat{V}_{\mu}^{E}\left|D^{\prime}\left(p_{D^{\prime}}\right)\right\rangle=\left\langle\widehat{V}_{\mu}^{E}\right\rangle_{\mathrm{Lor}}+\left\langle\widehat{V}_{\mu}^{E}\right\rangle_{\text {hyp }} \\
& \left\langle\widehat{V}_{\mu}^{E}\right\rangle_{\mathrm{Lor}}=P_{\mu}^{E} f_{+}\left(q^{2}, a^{2}\right)+q_{\mu}^{E} \frac{M_{D^{\prime}}^{2}-M_{\pi}^{2}}{q^{2}}\left[f_{0}\left(q^{2}, a^{2}\right)-f_{+}\left(q^{2}, a^{2}\right)\right] \\
& \left\langle\widehat{V}_{\mu}^{E}\right\rangle_{\mathrm{hyp}}=a^{2}\left[\left(q_{\mu}^{E}\right)^{3} H_{1}+\left(q_{\mu}^{E}\right)^{2} P_{\mu}^{E} H_{2}+q_{\mu}^{E}\left(P_{\mu}^{E}\right)^{2} H_{3}+\left(P_{\mu}^{E}\right)^{3} H_{4}\right]
\end{aligned}
$$

$\left\langle\mathrm{V}_{\mu}\right\rangle_{\text {hyp }}$ is the most general structure up to $\mathrm{O}\left(\mathrm{a}^{2}\right)$ that transforms properly under hypercubic rotations
this decomposition implies that $f_{+, 0}$ depends on q^{2} and on the hypercubic invariants $q^{[4]}, q^{[3] P} P^{[1]}, q^{[2]} P^{[2]}, q^{[1] P[3]}, P^{[4]}$
H_{i} are assumed to depend only on q^{2}, M_{D} and M_{π}

$$
H_{i}(z)=d_{0}^{i}+d_{1}^{i} z+d_{2}^{i} z^{2}
$$

Global Fit

[Phys. Rev. D82 (2010) 114506]

Modified z expansion

$f_{+}^{D^{\prime} \rightarrow \pi}\left(q^{2}, a^{2}\right)=\frac{f^{D^{\prime} \rightarrow \pi}\left(0, a^{2}\right)+c_{+}\left(a^{2}\right)\left(z-z_{0}\right)\left(1+\frac{z+z_{0}}{2}\right)}{1-\frac{q^{2}}{M_{D^{\prime}}^{2}+\Delta^{2}}\left(1+P_{+} a^{2}\right)}$
$f_{0}^{D^{\prime} \rightarrow \pi}\left(q^{2}, a^{2}\right)=\frac{f^{D^{\prime} \rightarrow \pi}\left(0, a^{2}\right)+c_{0}\left(a^{2}\right)\left(z-z_{0}\right)\left(1+\frac{z+z_{0}}{2}\right)}{1-\frac{q^{2}}{M_{S}^{2}}}$

$$
\begin{aligned}
z & =\frac{\sqrt{t_{+}-q^{2}}-\sqrt{t_{+}-t_{0}}}{\sqrt{t_{+}-q^{2}}+\sqrt{t_{+}-t_{0}}} \\
t_{+} & =\left(M_{D^{\prime}}+M_{\pi}\right)^{2} \\
t_{0} & =\left(M_{D^{\prime}}+M_{\pi}\right)\left(\sqrt{M_{D^{\prime}}}-\sqrt{M_{\pi}}\right)^{2}
\end{aligned}
$$

for $\mathrm{C}_{+, 0}$ we adopted a simple linear dependence in a^{2}
$M_{D^{\prime}}$ is the PS mass calculated on the lattice and $\Delta^{2}=M_{D^{2}}-M_{D^{2}}$
Ms is left as a free parameter

Hard Pion SU(2) ChPT
Bijnens \& Jemos
[Phys.Rev. D79 (2009) 013008]

$$
f^{D^{\prime} \rightarrow \pi}\left(0, a^{2}\right)=F_{+}\left[1+-\frac{3}{4}\left(1+3 \widehat{g}^{2}\right) \xi_{\ell} \log \xi_{\ell}+b_{1} \xi_{\ell}+b_{2} \xi_{\ell}^{2}+b_{3} a^{2}\right]
$$

Results

Subtraction of the hypercubic effects in the $D^{\prime} \rightarrow \pi$ vector form factor and restored q^{2} dependence

f plus

Results

Subtraction of the hypercubic effects in the $D^{\prime} \rightarrow \pi$ vector form factor and restored q^{2} dependence

Results in the continuum

$D^{\prime} \longrightarrow \pi$ vector and scalar form factors in the continuum as the D' mass gets heavier

f zero

Comparison With Heavy Meson At Rest - on the lattice

Comparison With Heavy Meson At Rest - in the continuum

Percentage difference between the form factors obtained in our analysis using all available data (corrected for hyper cubic effect) or using heavy meson at rest data (uncorrected for hyper cubic effect)

Comparison Between Different Kinematics

Percentage difference between the form factors obtained using only heavy meson at rest data or Breit Frame data

Conclusions

The breaking of the Lorentz symmetry due to hypercubic effects we observe in the vector, scalar and tensor form factor for the $D \rightarrow \pi(\mathrm{~K})$ transitions is still there for transition with heavier father meson

However our precision rapidly degrades as we move to heavier masses

The next necessary step will be to improve the quality of the signals

Backup slides

Simulation Details

Something on the action:
Wilson Twisted Mass action at maximal twist with $\mathrm{Nf}=2+1+1$ sea quarks

Osterwalder-Seiler valence quark action
Iwasaki gluon action

Results in the continuum

Comparison With Heavy Meson At Rest - on the lattice

Comparison With Heavy Meson At Rest - on the lattice

