Excited state analysis in the quasi-PDF matrix elements

Yi-Bo Yang Michiaan State University

Lattice **P**arton **P**hysics **P**roject

yangyibo@pa.msu.edu

Large momentum effective theory

The light-cone PDF is defined by

$$\begin{split} q(x,\mu^2) \; &= \; \int \frac{d\xi^-}{4\pi} e^{-ix\xi^- P^+} \langle P | \overline{\psi}(\xi^-) \gamma^+ \\ & \times \exp\left(-ig \int_0^{\xi^-} d\eta^- A^+(\eta^-)\right) \psi(0) | P \rangle \end{split}$$

When nucleon is boosted:

 The axial gauge conditions become the light-cone one,

quasi-PDF

and the FT of the RI/MOM renormalized quasi-PDF,

$$\langle P|\bar{\psi}(z)\gamma_t U_z(z,0)\psi(0)|P\rangle_{p^2=\mu_R^2,p_z=p_z^R}^R$$

X. Ji, PRL 110 (2013) 262002, 1305.1539 X. Ji. SCPMA 57 (2014) 1407, 1404.6680

becomes the light-cone PDF up to perturbative matching.

Large momentum...

Really possible?

- The expectation value of a moving hadron decays as $\sim e^{-Et}$, where $E=\sqrt{(m^2+p^2)}$.
- Its statistical uncertainty decays as $\sim e^{-m_0 t}$, where $m_0 \propto m_\pi$ and $m_0 \leq m$.
- Seems to be hopeless to reach large momentum as required by LaMET.

An example from: YBY, et al., χQCD collaboration, PRD93 (2016) 034503, 1509.04616

Momentum smearing

in 2pt

Wuppertal (Gaussian) Smearing

Momentum Smearing

Momentum smearing can provide much better signal in 2pt!

Momentum smearing

Momentum Smearing

The expectation value of the 2pt with momentum, ~e^{-Et}

The momentum smearing is not a magic. Just effectively gain some statistics.

2pt

a09m310

- m_{π} ~670 MeV, m_{π} sea~310 MeV, a=0.09 fm;
- $L^3xT = 32^3x96$;
- 1 step HYP smearing on everything.
- 1152 measurements=(288 configurations) x (4 sources/configuration);

+: smeared src. to smeared sink

x: smeared src. to point sink

Quasi-PDF matrix element

In practical, the following ratio is calculated on the lattice:

$$= \tilde{h}(z, P_z) + C_1(e^{-\Delta m t_1} + e^{-\Delta m (t_2 - t_1)}) + C_2 e^{-\Delta m t_2}$$

where the $C_{1,2}$ terms correspond to the excited state contaminations vanishing in the $t_2 \gg t_1 \gg 0$ limit.

Quasi-PDF matrix element

1-term fit: A constant fit around t₁~t₂/2

2-term fit: drop the contribution from the C₂ term

2-termRR fit: including all the terms

The fit results of the ME

z=0, unpolarized

Three groups for three types of the fits

Different colors for different minimum separations.

 P_z =2.6 GeV, unpolarized, σ =5, Re[h^R(0)]

0.92

The results with different P_z are consistent with the same normalization at z=0.

The horizontal line with the same value are placed to guide your eyes.

Pz=2.2 GeV, z=8, unpolarized

Three groups for three types of the fits

Different colors for different minimum separations.

 P_z =2.2 GeV, unpolarized, σ =5, Im[h^R (8)]

At z=8, the fits for the imaginal part have good agreement but the real part require more statistics at large t_{sep} to get a solid conclusion.

Two-state fit vs.

Ruizi. Li, et al., LP³ collaboration, in preparation

Summary

- The momentum smearing allow us to achieve good signal for the matrix elements with large hadron momentum, at small source-sink separation.
- The multi-state fit can provide a good subtraction on the excited state contamination with smaller source-sink separations.
- The production with another smearing size are ongoing to confirm the multi-state fit results.