Corrections to Dashen's theorem from lattice QCD and quenched QED

Bálint C. Tóth
University of Wuppertal

Budapest-Marseille-Wuppertal-collaboration

July 27, 2018

Outline

(1) Introduction
(2) QCD+QED
(3) Definitions
(4) Computational details
(5) Results
(6) Summary

Outline

(1) Introduction
(2) QCD + QED
(3) Definitions

4 Computational details
(5) Results
(6) Summary

Dashen's Theorem

- According to Dashen's theorem, in the $S U(3)$ limit

$$
\Delta_{\mathrm{QED}} M_{K}^{2}=\Delta_{\mathrm{QED}} M_{\pi}^{2}
$$

where $\quad \Delta_{Q E D} M_{K}^{2}=\left(M_{K^{-}}^{2}-M_{K^{0}}^{2}\right)_{\text {QED }} \quad \Delta_{Q E D} M_{\pi}^{2}=\left(M_{\pi^{-}}^{2}-M_{\pi^{0}}^{2}\right)_{\text {QED }}$

- Corrections are large away from $S U(3)$ limit
- Correcton can be characterized by

$$
\epsilon=\frac{\Delta_{\mathrm{QED}} M_{K}^{2}-\Delta_{\mathrm{QED}} M_{\pi}^{2}}{\Delta M_{\pi}^{2}}
$$

Outline

(2) QCD+QED

(3) Definitions

4 Computational details
(5) Results
(6) Summary

QCD+QED

- Noncompact photon action

$$
S_{\gamma}[A]=\frac{1}{4} \sum_{\mu, \nu, x}\left(\partial_{\mu} A_{x, \nu}-\partial_{\nu} A_{x, \mu}\right)^{2}
$$

- Gauge fixing: Coulomb gauge $\underline{\boldsymbol{\partial}}^{\dagger} \cdot \underline{\mathbf{A}}_{x}=0$
- Zero mode subtraction: QED $_{L}$

$$
\sum_{\underline{\mathbf{x}}} A_{\underline{\mathbf{x}}, t, \mu}=0 \quad \text { for all } t \text { and } \mu
$$

- Coupling to quarks

$$
U_{x, \mu} \quad \longrightarrow \quad U_{x, \mu} \cdot e^{i e q A_{x, \mu}}
$$

FV correction in QED ${ }_{L}$

$$
m(T, L) \sim m \cdot\left(1-\frac{q^{2} \alpha \kappa}{2 m L}\left[1+\frac{2}{m L}\right]+\mathcal{O}\left(\frac{\alpha}{L^{3}}\right)\right)
$$

with $\kappa \approx 2.837297$
[Borsanyi et.al., 2015]

Quenched QED

- QCD + QED

$$
\langle\mathcal{O}\rangle_{U, A}=\frac{1}{Z} \int \mathrm{~d} U \int \mathrm{~d} A \mathcal{O}(U, A) e^{-S_{g}[U]} e^{-S_{\gamma}[A]} \operatorname{det} M(U, A)
$$

- Quenched QED

$$
\begin{aligned}
\langle\mathcal{O}\rangle_{\substack{U, \text { dynamical } \\
A, \text { quenched }}} & =\frac{1}{Z} \int \mathrm{~d} U \underbrace{\int \mathrm{~d} A \mathcal{O}(U, A) e^{-S_{\gamma}[A]}}_{\langle\mathcal{O}(U, A)\rangle_{A, q}} e^{-S_{g}[U]} \operatorname{det} M(U) \\
& =\left\langle\langle\mathcal{O}(U, A)\rangle_{A, q .}\right\rangle_{U}
\end{aligned}
$$

- In practice
- Generate $\operatorname{SU}(3)$ configurations
- For each $S U(3)$ configuration, generate $U(1)$ configurations with S_{γ}
- Measure $\mathcal{O}(U, A)$

Outline

(3) Definitions
(4) Computational details
(5) Results
(6) Summary
B. C. Tóth \mid BMWc Corrections to Dashen's theorem from LQCD and qQED

Physical point

| bare parameters | \longrightarrow |
| :---: | :---: | measurable observables | $m_{I}=\frac{m_{d}+m_{u}}{2}$ | $M_{\pi^{+}}^{2}$ |
| :---: | :---: |
| $\delta m=m_{d}-m_{u}$ | $\Delta M_{K}^{2}=M_{K^{0}}^{2}-M_{K^{+}}^{2}$ |
| m_{s} | $M_{K \chi}^{2}=M_{K^{0}}^{2}+M_{K^{+}}^{2}-M_{\pi^{+}}^{2}$ |
| α | α |
| a | M_{Ω} |

- We are at the physical point, if

$$
\frac{M_{\pi^{+}}^{2}}{M_{\Omega}^{2}}=\left(\frac{M_{\pi^{+}}^{2}}{M_{\Omega}^{2}}\right)_{\text {phys }}, \quad \frac{\Delta M_{K}^{2}}{M_{\Omega}^{2}}=\left(\frac{\Delta M_{K}^{2}}{M_{\Omega}^{2}}\right)_{\text {phys }}, \quad \frac{M_{K \chi}^{2}}{M_{\Omega}^{2}}=\left(\frac{M_{K \chi}^{2}}{M_{\Omega}^{2}}\right)_{\text {phys }}, \quad \alpha=\alpha_{\text {phys }}
$$

- In vicinity of physical point

$$
\begin{aligned}
& \mathcal{O}\left(\left\{m_{l}, \delta_{m}, m_{s}, \alpha\right\}\right)=\mathcal{O}_{\text {phys }}+B\left(\frac{M_{\pi^{+}}^{2}}{M_{\Omega}^{2}}-\left(\frac{M_{\pi^{+}}^{2}}{M_{\Omega}^{2}}\right)_{\text {phys }}\right)+C\left(\frac{\Delta M_{K}^{2}}{M_{\Omega}^{2}}-\left(\frac{\Delta M_{K}^{2}}{M_{\Omega}^{2}}\right)_{\text {phys }}\right)+ \\
&+D\left(\frac{M_{K \chi}^{2}}{M_{\Omega}^{2}}-\left(\frac{M_{K \chi}^{2}}{M_{\Omega}^{2}}\right)_{\text {phys }}\right)+E\left(\alpha-\alpha_{\text {phys }}\right)
\end{aligned}
$$

- Introduce
$M_{u u}$: meson with quark content $u, \bar{u}, \quad w / o$ disconnected $M_{d d}$: meson with quark content d, \bar{d}, w/o disconnected
- Connection to quark masses

$$
\begin{aligned}
M_{u u}^{2} & \propto m_{u} \\
M_{d d}^{2} & \propto m_{d} \\
\Delta M^{2}=M_{d d}^{2}-M_{u u}^{2} & \propto m_{d}-m_{u} \\
M_{\pi^{0}}^{2} & \propto \frac{m_{d}+m_{u}}{2}
\end{aligned}
$$

- Define

$$
\frac{m_{u}}{m_{d}}=\frac{2 M_{\pi^{0}}^{2}-M_{d d}^{2}+M_{u u}^{2}}{2 M_{\pi^{0}}^{2}+M_{d d}^{2}-M_{u u}^{2}}=\frac{2 M_{\pi^{0}}^{2}-\Delta M^{2}}{2 M_{\pi^{0}}^{2}+\Delta M^{2}}
$$

Strategy to obtain m_{u} / m_{d}

- Measure $\Delta M^{2}=M_{d d}^{2}-M_{u u}^{2}$ in continuum, at physical point

$$
\begin{aligned}
& \left(\frac{\Delta M^{2}}{M_{\Omega}^{2}}\right)\left(\left\{m_{l}, \delta m, m_{s}, \alpha\right\}\right)=\left(\frac{\Delta M^{2}}{M_{\Omega}^{2}}\right)_{\text {phys }}+B\left(\frac{M_{\pi^{+}}^{2}}{M_{\Omega}^{2}}-\left(\frac{M_{\pi^{+}}^{2}}{M_{\Omega}^{2}}\right)_{\text {phys }}\right)+ \\
& +C\left(\frac{\Delta M_{K}^{2}}{M_{\Omega}^{2}}-\left(\frac{\Delta M_{K}^{2}}{M_{\Omega}^{2}}\right)_{\text {phys }}\right)+D\left(\frac{M_{K \chi}^{2}}{M_{\Omega}^{2}}-\left(\frac{M_{K \chi}^{2}}{M_{\Omega}^{2}}\right)_{\text {phys }}\right)+E\left(\alpha-\alpha_{\text {phys }}\right)
\end{aligned}
$$

- Then

$$
\frac{m_{u}}{m_{d}}=\frac{2\left(\frac{M_{\pi^{0}}^{2}}{M_{\Omega}^{2}}\right)_{\text {phys }}-\left(\frac{\Delta M^{2}}{M_{\Omega}^{2}}\right)_{\text {phys }}}{2\left(\frac{M_{\pi^{0}}^{2}}{M_{\Omega}^{2}}\right)_{\text {phys }}+\left(\frac{\Delta M^{2}}{M_{\Omega}^{2}}\right)_{\text {phys }}}
$$

Correction to Dashen's Theorem

- Correction is characterised by

$$
\epsilon=\frac{\Delta_{\mathrm{QED}} M_{K}^{2}-\Delta_{\mathrm{QED}} M_{\pi}^{2}}{\Delta M_{\pi}^{2}}
$$

where $\quad \Delta_{Q E D} M_{K}^{2}=\left(M_{K^{-}}^{2}-M_{K^{0}}^{2}\right)_{\text {QED }} \quad \Delta_{\text {QED }} M_{\pi}^{2}=\left(M_{\pi^{-}}^{2}-M_{\pi^{0}}^{2}\right)_{\text {QED }}$

- $\Delta_{Q E D} M_{\pi}^{2}$ is difficult to measure ΔM_{π}^{2} is dominated by $\Delta_{Q E D} M_{\pi}^{2}$
- Measure instead

$$
\epsilon^{\prime}=\frac{\Delta_{\mathrm{QED}} M_{K}^{2}-\Delta M_{\pi}^{2}}{\Delta M_{\pi}^{2}}
$$

- We need to obtain $\Delta_{Q E D} M_{K}^{2}$ in continuum, at physical point

Strategy to obtain $\triangle_{\text {QED }} M_{K}^{2}$

- $\frac{\Delta M_{K}^{2}}{M_{\Omega}^{2}}=\left(\frac{\Delta_{\text {QED }} M_{K}^{2}}{M_{\Omega}^{2}}\right) \quad$ if

$$
\left(\frac{\Delta M^{2}}{M_{\Omega}^{2}}\right)=0, \quad \frac{M_{\pi^{+}}^{2}}{M_{\Omega}^{2}}=\left(\frac{M_{\pi^{+}}^{2}}{M_{\Omega}^{2}}\right)_{\text {phys }}, \quad \frac{M_{K \chi}^{2}}{M_{\Omega}^{2}}=\left(\frac{M_{K \chi}^{2}}{M_{\Omega}^{2}}\right)_{\text {phys }}, \quad \alpha=\alpha_{\text {phys }}
$$

- Measure $\left(\frac{\Delta M^{2}}{M_{\Omega}^{2}}\right)_{\text {phys }}$ and C

$$
\begin{aligned}
& \left(\frac{\Delta M^{2}}{M_{\Omega}^{2}}\right)=\left(\frac{\Delta M^{2}}{M_{\Omega}^{2}}\right)_{\text {phys }}+B\left(\frac{M_{\pi^{+}}^{2}}{M_{\Omega}^{2}}-\left(\frac{M_{\pi^{+}}^{2}}{M_{\Omega}^{2}}\right)_{\text {phys }}\right)+ \\
& \quad+C\left(\frac{\Delta M_{K}^{2}}{M_{\Omega}^{2}}-\left(\frac{\Delta M_{K}^{2}}{M_{\Omega}^{2}}\right)_{\text {phys }}\right)+D\left(\frac{M_{K \chi}^{2}}{M_{\Omega}^{2}}-\left(\frac{M_{K \chi}^{2}}{M_{\Omega}^{2}}\right)_{\text {phys }}\right)+E\left(\alpha-\alpha_{\text {phys }}\right)
\end{aligned}
$$

- Obtain $\frac{\Delta_{Q E D} M_{K}^{2}}{M_{\Omega}^{2}}$ from

$$
0=\left(\frac{\Delta M^{2}}{M_{\Omega}^{2}}\right)_{\text {phys }}+C\left(\frac{\Delta_{\mathrm{QED}} M_{K}^{2}}{M_{\Omega}^{2}}-\left(\frac{\Delta M_{K}^{2}}{M_{\Omega}^{2}}\right)_{\text {phys }}\right)
$$

Outline

(2) QCD + QED
(3) Definitions
(4) Computational details
(5) Results
(6) Summary

Ensembles

- Subset of [1612.02364,1711.04980]
- Tree-level Symanzyk gauge action
- $N_{f}=2+1+1$ staggered fermions
- stout smearing 4 steps, $\varrho=0.125$
- m_{l} and m_{s} are chosen to give approx.

$$
\begin{aligned}
& \bar{M}_{\pi}=134.8(3) \mathrm{MeV} \\
& \bar{M}_{K}=494.2(3) \mathrm{MeV}
\end{aligned}
$$

[FLAG, 2017]

- m_{c} is fixed via $\frac{m_{c}}{m_{s}}=11.85$
- α is set to Thomson limit
- a is fixed via $M_{\Omega}=1672.45 \mathrm{MeV}$

Fit strategy

- Measurements at 3 parameter sets:

$$
\begin{aligned}
\text { ISO: } \delta m=0, & \alpha=0 \quad \longrightarrow \quad \Delta M^{2}=0, \quad \Delta M_{K}^{2}=0 \\
\text { QED: } \delta m=0, & \alpha=\alpha_{\text {phys }} \\
\text { SIB: } \delta m \neq 0, & \alpha=0
\end{aligned}
$$

- Fully correlated fit for $\left(\frac{\Delta M^{2}}{M_{\Omega}^{2}}\right)_{\text {phys }}, A_{\gamma}, A_{s}, B, C, D$

$$
\begin{aligned}
& \left(\frac{\Delta M^{2}}{M_{\Omega}^{2}}\right)(Q E D)=\left(\frac{\Delta M^{2}}{M_{\Omega}^{2}}\right)_{\text {phys }}+A_{\gamma} \cdot\left(a M_{\Omega}\right)^{2}+B\left(\frac{M_{\pi^{+}}^{2}}{M_{\Omega}^{2}}(Q E D)-\left(\frac{M_{\pi^{+}}^{2}}{M_{\Omega}^{2}}\right)_{\text {phys }}\right)+ \\
& \quad+C\left(\frac{\Delta M_{K}^{2}}{M_{\Omega}^{2}}(Q E D)-\left(\frac{\Delta M_{K}^{2}}{M_{\Omega}^{2}}\right)_{\text {phys }}\right)+D\left(\frac{M_{K \chi}^{2}}{M_{\Omega}^{2}}(Q E D)-\left(\frac{M_{K \chi}^{2}}{M_{\Omega}^{2}}\right)_{\text {phys }}\right)
\end{aligned}
$$

$$
\left(\frac{\Delta M^{2}}{M_{\Omega}^{2}}\right)(S I B)-\left(\frac{\Delta M^{2}}{M_{\Omega}^{2}}\right)(I S O)=A_{s} \cdot\left(a M_{\Omega}\right)^{2}+
$$

$$
+B\left(\frac{M_{\pi^{+}}^{2}}{M_{\Omega}^{2}}(S \mid B)-\frac{M_{\pi^{+}}^{2}}{M_{\Omega}^{2}}(I S O)\right)+C\left(\frac{\Delta M_{K}^{2}}{M_{\Omega}^{2}}(S \mid B)-\frac{\Delta M_{K}^{2}}{M_{\Omega}^{2}}(I S O)\right)
$$

Outline

(1) Introduction

(2) QCD+QED
(3) Definitions

4 Computational details
(5) Results
(6) Summary

Continuum limit

$$
\begin{aligned}
\Delta M^{2} & =1.279(18)(17) \times 10^{4} \mathrm{MeV}^{2} \\
\frac{m_{u}}{m_{d}} & =\frac{2 M_{\pi^{0}}^{2}-\Delta M^{2}}{2 M_{\pi^{0}}^{2}+\Delta M^{2}}=0.4804(55)(52)
\end{aligned}
$$

A_{γ} vs. A_{s}

$\Delta_{Q E D} M_{K}^{2}$

$$
C=2.085(29)(12) \quad \Delta M^{2}=\Delta M_{\text {phys }}^{2}+C\left(\Delta M_{K}^{2}-\Delta M_{K, \text { phys }}^{2}\right)+\ldots
$$

$$
\Delta_{\mathrm{QED}} M_{K}^{2}=\Delta M_{K}^{2}-\frac{1}{C} \cdot \Delta M^{2}=2228(35)(47) \mathrm{MeV}^{2}
$$

$$
\epsilon^{\prime}=\frac{\Delta_{\mathrm{QED}} M_{K}^{2}-\Delta M_{\pi}^{2}}{\Delta M_{\pi}^{2}}=0.767(28)(38)
$$

Outline

(1) Introduction

(2) QCD+QED
(3) Definitions
(4) Computational details
(5) Results
(6) Summary

Summary

- Computation of m_{u} / m_{d} and $\Delta_{\text {QED }} M_{K}^{2}$ using $N_{f}=2+1+1$ staggered fermions
- QED is still quenched
- Preliminary results, compatible with previous calculations

