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Introduction

Two projects, to calculate QED finite-volume effects (FVEs) for

• Hadron self-energy in moving frame
• Hadronic vacuum polarisation (HVP)

using scalar QED as an effective theory.
I will focus on the numerical aspect of these projects (lattice
scalar QED simulations).
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QED FVEs

• As lattice QCD errors approach 1%, QED corrections
become important.

• QED FVEs are larger than QCD FVEs, due to long-range
interaction.

• Low-energy effects - can be calculated in effective theory
(e.g. scalar QED).
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QED FVEs

• Using the QEDL framework, FVEs have been calculated
for hadron masses [Davoudi & Savage, arXiv:1402.6741; Borsanyi et al., arXiv:1406.4088]

and leptonic decay amplitudes [Lubicz et al., arXiv:1611.08497].
• We extend the calculation for hadron masses to moving
frames, for both on-shell and off-shell momentum, and
calculate QED FVEs for the HVP.
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Numerical strategy

• Simulate lattice scalar QED on several volumes.
• Cross-check analytic calculations.
• Cheap simulations - high precision, low computational
cost.

• Understand features of QED on the lattice which may
otherwise be overlooked.

5/24



Scalar QED on the lattice
Discretised scalar QED action:

S [φ, A] = Sφ [φ, A] + SFeyn. [A]
Feynman-gauge QED action:

SFeyn. [A] = a4
∑
x




1
4

∑
µ,ν

�
δµAν(x) − δνAµ(x)�2 + 12

∑
µ

�
δµAµ(x)�2




= −
a4

2
∑
x
Aµ(x)δ2Aµ(x)

• In momentum space, Ãµ (k) is Gaussian - cheap to sample
gauge configurations [Duncan, Eichten & Thacker, arXiv:hep-lat/9602005].

• Subtract zero mode using QEDL scheme
[Uno & Hayakawa, arXiv:0804.2044].
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Scalar QED on the lattice

Scalar action:

Sφ [φ, A] = a4

2
∑
x
φ∗ (x)∆φ (x)

∆ = −
∑

µ

D∗µDµ +m2

Dµf (x) = a−1
[
eiqaAµ (x)f (x + aµ̂) − f (x)]

Quenched theory: set scalar determinant = 1 in path integral.
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Calculating the scalar propagator

Alternative to CG, making use of FFT.
Expand scalar propagator around q = 0:

∆ = −
∑

µ

D∗µDµ +m2 = ∆0 + q∆1 + q2∆2 + O
(
q3

)
∆
−1 = ∆

−1
0 − q∆

−1
0 ∆1∆

−1
0

+q2
[
∆
−1
0 ∆1∆

−1
0 ∆1∆

−1
0 − ∆

−1
0 ∆2∆

−1
0

]
+ O

(
q3

)

+ + +
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Calculating the scalar propagator

Free scalar propagator:

∆
−1
0 = F

−1 1
k̂2 +m2

F

Photon vertex operators:

∆1 = −ia−1F −1
∑

µ

[
F AµF

−1eiakµ − e−iakµF AµF
−1]
F

∆2 =
1
2F

−1
∑

µ

[
F A2µF −1eiakµ + e−iakµF A2µF −1

]
F

where F represents the Fourier transform.
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Scalar self-energy

• Self-energy Σ (p) is defined by the amputated O �
q2

�

corrections to the scalar propagator.
• When p is a lattice mode (off-shell), calculate Σ (p)
directly frommomentum-space scalar propagator.

• When p is on-shell (p0 = i
√
p2 +m2), obtain Σ (p) from

large-time behaviour of correlators.
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Scalar self-energy - on-shell

Time-momentum scalar propagator:

C (t , p) = C0 (t , p) + q2C1 (t , p) + O
(
q4

)
In continuous space-time (for simplicity):

C0 (t , p) =
ˆ dp0

2π
eip0t

p2 +m2 =
e−ω(p)|t |

2ω (p)
C1 (t , p) =

ˆ dp0
2π

Σ (p)
�
p2 +m2�2 e

ip0t

where ω (p) = √
p2 +m2
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Scalar self-energy - on-shell

Ground state contribution is from pole at p0 = iω (p):

C (Σ)
1 (t , p) = e−ω(p)|t |

4ω (p)3
{
[1 + |t |ω (p)] Σ (po.s.) − iω (p) ∂Σ

∂p0
(po.s.)

}

so we can construct an effective self-energy:

Σeff . (t , p) = 2ω (p) sign (t) ∂t
[
C1 (t , p)
C0 (t , p)

]

[de Divitiis et al., arXiv:1303.4896; Giusti et al., arXiv:1704.06561]

12/24



Scalar self-energy - excited states

• C1 (t , p) also gets excited state contributions from poles of
Σ (p) at p0 = iωγ (p, k), where ωγ (p, k) = |k| + ω (p − k).

• Ground state dominance relies on energy gap
ωγ (p, k) − ω (p), which vanishes in the infinite-volume
limit

• In scalar QED we can calculate excited state contributions
analytically and subtract them.

• In QCD calculations this is not possible - severe
contamination from excited states at large volumes.
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Effective self-energy
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Effective self-energy, 643 × 128, m = 0.2, p = [2 0 0]
0 states subtracted
6 states subtracted
146 states subtracted
4168 states subtracted
132450 states subtracted
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Results: scalar self-energy

On-shell:

∆Σ (po.s.) = m2
{ 1
γ (|v|)

c2,1 (v)
4π2mL

+
c1

2π (mL)2 +
[ 1
γ (|v|)3 −

1
γ (|v|)

] 1
2 (mL)3 + O

(
e−mL

)}

Off-shell:

∆Σ (p) = m2
{ 1
γ (|v|)2

c1
πσ (mL)2 +

[( 4
σ2
−
2
σ

) 1
γ (|v|)3 +

( 1
2 −

2
σ

) 1
γ (|v|)

] 1
(mL)3 + O

( 1
(mL)4

)}

where σ = p20/ω (p)2 + 1, v = p/ω (p) and γ (β) = 1/√1 − β2.
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Results: scalar self-energy
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On-shell self-energy, m = 0.2, p = (1, 1, 0) × 2 /32
analytic
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16/24



Results: scalar self-energy
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analytic
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HVP
5 NLO connected diagrams:

Π
�
q2

�
= 2 · E + 2 · T + X + S + 4 · C

17/24



HVP - renormalisation

• FVEs are IR effects, so naïvely expect unrenormalised
theory to have same FVEs as renormalised theory.

• Not true at 2 loops - exponential FVEmultiplied by
quadratic divergence.

• Need to calculate counter-terms.
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HVP - renormalisation

Three counter-terms relevant here:

• δmφ†φ (mass renormalisation)
• δZ p̂2φ†φ (wavefunction renormalisation)
• δV (iq) � Gp1 + p2

�µ
φ†Aµφ (vertex correction)

Renormalisation conditions:

• Σ (0) = 0 fixes δm
• Σ (q = 2π/128) = 0 fixes δZ
• Ward identity fixes δV = δZ
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Results: HVP

• For each diagram (E , T , S, C , X ), leading FV correction is
O

�1/L2�.
• For full HVP, O �1/L2� terms cancel and leading correction
is O �1/L3�.

• Absence of O (1/L) and O �1/L2� corrections is universal.
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Results: HVP
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Results: HVP
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Infrared improvement

• We are free to modify a small subset of photon modes in
addition to the zero-mode.

• We can tune these modes to suppress FVEs for a given
quantity.

22/24



Infrared improvement
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Conclusions

• Extended hadron self-energy QEDL FVE calculations to
moving frame.

• Calculated QEDL FVEs for the HVP.
• Verified results using numerical simulations of scalar
QED.

• Through verification process, understood features which
need to be handled in numerical simulations:
– excited states
– renormalisation

• Outlook:
– Use these results in the development of QCD +QED
calculations,

– Further investigation of infrared improvement.
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