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The proposal

We propose...

a method to quantum simulate the lattice
Abelian Higgs model in 2D.

to use discrete integer-valued fields and
maintain gauge invariance exactly (tensor
formulation).

to measure universal features of the
Polyakov loop.

to use a physical ladder built as an optical
lattice.

an even simpler model can be tested first
using the same set-up (Ising).
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The model

The lattice gauge theory we focus on is the Abelian
Higgs model in two Euclidean dimensions. This model

is the Schwinger model with the fermion replaced
by a complex scalar field.

is believed to be confining, in the sense that there is
a linear potential.

has topological solutions.

Here the Higgs mode is taken infinitely massive.

S =− βpl
∑
x

∑
ν<µ

cos(Ax ,µ + Ax+µ,ν − Ax+ν,µ − Ax ,ν)

− 2κ
∑
x

2∑
ν=1

cos(θx+ν − θx + Ax ,ν)

Ux,ν
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Judah et al. (Syracuse U) Polyakov loop Lattice 2018 3 / 17



The model

The original partition function is a sum
over the compact fields

Z =

∫
D[Ax ,µ]D[θx ]e−S

The Boltzmann weights can be Fourier
expanded

eβpl cos(Fx,µν) =
∞∑

m=−∞
Im(βpl)e

imFx,µν

e2κ cos(θx+ν−θx+Ax,ν) =
∞∑

n=−∞
In(2κ)e in(θx+ν−θx+Ax,ν)

giving

Z =
∑
{m}

(∏
x ,µν

Im(βpl)

)(∏
x ,µ

Im−m′(2κ)

)

For tensor people:

Im−m′(2κ) =
∑
α

LmαL
T
αm′(2κ)

Tijkl(βpl , κ) =
∑
m

Im(βpl)LmiLmjLmkLml(2κ)
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The model
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The observable

We looked at the Polyakov loop: A Wilson loop wrapped
around the temporal direction of the lattice. This operator

is a product of gauge fields in the time direction.

is an order parameter for confinement in gauge theories.

P =
Nτ∏
n=1

Ux∗+nτ̂ ,τ .
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TRG & MC comparison
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The energy gap

Initial work led us to believe that

〈P〉 ' e−(∆E)Nτ

for large Nτ . aNτ = 1
T .

∆E is the energy gap between a
system with a Polyakov loop,
and one without.

We further investigated the
finite-size scaling of the gap and
the dependence on βpl and κ. 0 20 40 60 80 100 120 140
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The energy gap & collapse
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Continuous time limit

original lattice → a, κs smaller &
βpl , κτ larger

a, κs smaller &
βpl , κτ larger

a, κs smaller &
βpl , κτ larger
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The quantum Hamiltonian

This model has a continuous-time limit which is gauge invariant.

The continuous-time limit: taking βpl , κτ →∞, and κs , a→ 0,
such that

U ≡ 1

βpla
=

g2

a
, Y ≡ 1

2κτa
, X ≡ 2κs

a

are held constant.

H =
U

2

Ns∑
i=1

(Lzi )2 +
Y

2

′∑
i

(Lzi+1 − Lzi )2 − X
Ns∑
i=1

Ux
i

with

Lz |m〉 = m|m〉, Ux =
1

2
(U+ + U−), U±|m〉 = |m ± 1〉.

B

B

A(τ)

A(τ)

A(s) A(s)

B

B

Judah et al. (Syracuse U) Polyakov loop Lattice 2018 11 / 17



The Polaykov loop

The Polyakov loop has a continuous-time limit:

P =
Nτ∏
n=1

Im−m′−1(2κ)

Im−m′(2κ)
7→ −Y

2
(2(Lzi∗+1 − Lzi∗)− 1)

This gets put into the quantum Hamiltonian.

The Hamiltonian with the Polyakov loop inserted:

H̃ = H − Y

2
(2(Lzi∗+1 − Lzi∗)− 1)

In this form ∆E comes from the difference in the ground states of the two Hamiltonians.
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Collapse across limits

The energy gap between a
system with a Polyakov loop,
and one without:

∆E = E
(0)
PL − E (0),

and a system with an external
field, and one without:

∆E = E
(0)
01BC − E (0).

We found for sufficiently small
(gNs)2

Ns ∆E = f (g2N2
s )

Furthermore, this collapse survives the continuous time
limit!
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Ladder system Hamiltonian
A 5-state truncation
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The quadratic potential

The local potentials and hopping
map straightforwardly.

The nearest-neighbor rung
interactions:

Vm,m′,i ,i ′ = Vm,m′δi ′,i+1

= (−|V0|+
Y

2
(m −m′)2)δi ′,i+1

can be accomplished using an
asymmetric ladder and a
Rydberg-dressed potential.

0 5 10 15 20
Distance R/ar

-2

-1

0

In
te

ra
ct

io
n 

p
ot

en
tia

l V
(R

)/
|V

0|

0 1 2 3 4

Distance ∆m/ar

-1.0

-0.8

-0.6

-0.4

In
t.

 p
ot

. V
/|V

0|

∆i = 0

∆i = 1

∆i = 2

∆i = 1

Judah et al. (Syracuse U) Polyakov loop Lattice 2018 15 / 17



In conclusion

The Abelian Higgs model, and the Polaykov loop, have a well-defined continuous-time
limit which is gauge invariant.

The Polyakov loop exhibits remarkable, universal finite-size scaling in both the direcrete
and continuous-time limit.

We propose a physical, multi-leg, optical-lattice ladder to quantum simulate the Abelian
Higgs model in 2D.

We can achieve the desired interactions for the lattice model using an asymmetric lattice
and a Rydberg-dressed potential.

The proposal could be tested with the simpler Ising model, where results are known
exactly.
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