# Scattering length from BS wave function inside the interaction range 

Yusuke Namekawa (Univ of Tsukuba) in collaboration with Takeshi Yamazaki

## Contents

1 Introduction ..... 3
2 Formulation(in brief) ..... 4
3 Set up of simulation ..... 6
4 Result7
5 Summary ..... 15

## Main messages

- Lattice QCD can provide on-shell scattering amplitude using BetheSalpeter(BS) wave function not only "outside" the interaction range but also "inside" the interaction range
$\diamond$ Our result of the scattering length agrees with the value of Lüscher's formula
- Lattice QCD can provide not only on-shell scattering amplitude but also half-off-shell scattering amplitude
$\diamond$ Half-off-shell scattering amplitude can be an additional input for effective theories and models of hadrons, as a supplement to experiments


## 1 Introduction

Hadron interactions can be studied by lattice QCD

- Direct approach:
$\diamond$ The standard method is Lüscher formula, which utilizes BS wave function outside the interaction range of two hadrons Lüscher $(1986,1990)$, cf. many talks in Lattice 2018
$\diamond$ Related issue: a relation between on-shell scattering amplitude and BS wave function inside the interaction range was discussed in the infinite volume Lin et al.(2001),CP-PACS(2005), Yamazaki and Kuramashi(2017)
cf. talk by Yamazaki-san
$\rightarrow$ We explore this relation by a finite volume simulation
- Indirect approach: ex. HAL QCD method (indirect method through a potential from BS wave function) cf. talks by Doi-san, Iritani-san


## 2 Formulation(in brief)

Scattering amplitude $H(p ; k)$ is obtained by BS wave function $\phi(\mathbf{x} ; k)$

- Integration range for $H(p ; k)$ can be changed from $\infty$ to finite value $R$, called interaction range, if $\left(\Delta+k^{2}\right) \phi(\mathbf{x} ; k)=0$ for $x>R$ $\therefore$ Lattice simulation for $H(p ; k)$ is possible, if $R<L / 2$
$\diamond$ We consider $I=2$ two-pion below inelastic threshold. $A_{1}^{+}$projection is applied for S-wave in center of mass frame. Exp tails are assumed to be tiny and ignored.

$$
\begin{aligned}
& \phi(\mathbf{x} ; k):=\langle 0| \Phi(\mathbf{x}, t)\left|\pi^{+} \pi^{+}, E_{k}\right\rangle e^{E_{k} t}, \\
&\left.\Phi(\mathbf{x}, t):=\sum_{\mathbf{r}} \pi^{+}{ }_{(R} A_{1}^{+}[\mathbf{x}]+\mathbf{r}, t\right) \pi^{+}(\mathbf{r}, t), \\
& R_{A_{1}^{+}[\mathbf{x}]: \text { projector onto } A_{1}^{+} \text {cubic group, } \quad E_{k}=2 \sqrt{m_{\pi}^{2}+k^{2}}} \\
& \Delta \phi(\mathbf{x} ; k):= \sum_{i=1}^{3}(\phi(\mathbf{x}+\hat{i} ; k)+\phi(\mathbf{x}-\hat{i} ; k)-2 \phi(\mathbf{x} ; k)): \text { Laplacian on lattices } \\
& H(p ; k):=-\int_{-\infty}^{\infty} d^{3} x e^{-i \mathbf{p} \cdot \mathbf{x}}\left(\Delta+k^{2}\right) \phi(\mathbf{x} ; k) \\
&=-\sum_{|x|<R} e^{-i \mathbf{p} \cdot \mathbf{x}}\left(\Delta+k^{2}\right) \phi(\mathbf{x} ; k), \quad \text { if }\left(\Delta+k^{2}\right) \phi(\mathbf{x} ; k)=0 \text { for } x>R \\
& \quad-4 / 16-
\end{aligned}
$$

## [Formulation(continued)]

- Once $H(p ; k)$ at on-shell $p=k$ is obtained, we can extract scattering phase shift $\delta(k)$ and scattering length $a_{0}$, as in Lüscher formula
$\diamond$ NB. $H(k ; k)$ appears in Lüscher's formalism, though $H(k ; k)$ is removed in the final form of Lüscher formula
$\rightarrow$ Our claim is "H(k;k) also keeps scattering info."

$$
\begin{aligned}
H(k ; k) & =\frac{4 \pi}{k} e^{i \delta(k)} \sin \delta(k) \\
a_{0} & =\tan \delta(k) / k+O\left(k^{2}\right)
\end{aligned}
$$

[Quick derivation on Lüscher formula]

$$
\begin{aligned}
\phi(\mathbf{x} ; k) \quad \begin{array}{l}
x>R
\end{array} v_{00} G(\mathbf{x} ; k), \quad G(\mathbf{x} ; k): \text { solution of }\left(\Delta+k^{2}\right) \phi(\mathbf{x} ; k)=0 \\
=\quad C_{00} e^{i \delta(k)} \sin (k x+\delta(k)) / k x+(l \geq 4 \text { terms }), \quad v_{00}, C_{00}: \text { constants }
\end{aligned}
$$

Expanding $G(\mathbf{x} ; k)$ by $j_{l}(k x)$ and $n_{0}(k x)$ and comparing their coefficients leads to

$$
\begin{aligned}
C_{00} H(k ; k) & =v_{00} \\
k \cot \delta(k) C_{00} H(k ; k) & =4 \pi v_{00} g_{00}(k)
\end{aligned}
$$

Taking a ratio of the above two equations gives Lüscher formula,

$$
\begin{gathered}
k \cot \delta(k)=4 \pi g_{00}(k) \\
-5 / 16-
\end{gathered}
$$

## 3 Set up of simulation

We use $I=2 \pi \pi$ system in quenched lattice QCD as a test bed

- Iwasaki gauge action at $\beta=2.334\left(a^{-1}=1.207[\mathrm{GeV}]\right)$ CP-PACS(2001,2005)
- Valence Clover quark action with $C_{\mathrm{SW}}=1.398$
$\diamond$ Four random $Z(2)$ sources avoiding Fierz contamination and Wall sources for comparison + Coulomb gauge fixing
$\diamond$ Periodic boundary condition in space, Dirichlet boundary condition in time

| Lattice | $\kappa_{\text {val }}$ | $m_{\pi}[\mathrm{GeV}]$ | $N_{\text {config }}$ | $N_{\text {Src }}$ |
| :---: | :---: | :---: | :---: | :---: |
| $24^{3} \times 64$ | 0.1340 | 0.86 | 200 | 32 |
| $24^{3} \times 96$ | 0.1340 | 0.86 | 200 | 24 |
|  | 0.1358 | 0.67 | 200 | 24 |
|  | 0.1369 | 0.52 | 200 | 24 |

## 4 Result

[Check of plateau of temporal correlators]

- Effective masses of one-pion $m^{\text {eff }}(\pi)$ and $I=2$ two-pion $E_{k}^{\text {eff }}(\pi \pi)$ have plateau in $t=[12,44]$
$\rightarrow$ No source dependence is observed for our case (fake plateau can appear for two baryons t.t.Takahashi and Y.K.Enyo(2009);HAL(Iritani et al.(2016); ;...)
$\diamond k_{t}^{2}$ is determined from $E_{k}(\pi \pi)=2 \sqrt{m_{\pi}^{2}+k_{t}^{2}}, k_{t}^{2} \neq p^{2}:=(2 \pi / L)^{2} n^{2}$


[Check of plateau of BS wave functions $\phi(\mathbf{x} ; k)$ ]
- Ratio of wave functions $\phi(\mathbf{x} ; k) / \phi\left(\mathbf{x}_{\mathrm{ref}} ; k\right)$ have plateau in $t=[32,44]$
$\diamond$ Larger $t$ is required for wave functions, but still under control cf. temporal correlators have plateau in $t=[12,44]$
$\diamond$ No source dependence is observed

$$
\begin{aligned}
& \phi(\mathbf{x} ; k) \\
& =\mathrm{const} \times \operatorname{prop}_{4 \mathrm{pt}}(\mathbf{x}, t) e^{E_{k} t} \\
& \phi(\mathbf{x} ; k) / \phi\left(\mathbf{x}_{\mathrm{ref}} ; k\right) \\
& =\operatorname{prop}_{4 \mathrm{pt}}(\mathbf{x}, t) / \operatorname{prop}_{4 \mathrm{pt}}\left(\mathbf{x}_{\mathrm{ref}}, t\right)
\end{aligned}
$$


[Check of sufficient condition: $\left.\left(\Delta+k^{2}\right) \phi(\mathbf{x} ; k)=0, R<x<L / 2\right]$

- We confirm $R \sim 10$, which is consistent with the result by CP-PACS(2005) $\rightarrow$ The sufficient condition is satisfied within our statistical errors
- $k_{s}^{2}$ can be inversely obtained by $k_{s}^{2}=-\Delta \phi(\mathbf{x} ; k) / \phi(\mathbf{x} ; k)$, which is more precise than $k_{t}^{2}=E_{k}^{2} / 4-m_{\pi}^{2}$ CP-PACS(2005)

$\diamond$ Reference point $\mathbf{x}_{\text {ref }}=(12,7,2)$ is chosen to minimize $l=4$ contribution: $\phi(\mathbf{x} ; k)=(l=0$ term $)+(l=4$ term $)+\ldots$
$\diamond$ Strictly speaking, there must be exp tail, which is below our statistical error
[Comparison of scattering length $a_{0}$ ]
- $a_{0}$ is evaluated by $H\left(k_{t} ; k_{t}\right)$ inside the interaction range or by Lüscher's formula outside the interaction range
$\diamond$ Both results agree well
$\diamond$ No source dependence is observed

| $a_{0} / m_{\pi}=$ | $\begin{array}{ll} & -0.80 \\ \tan \delta(k) /\left(k m_{\pi}\right)+O\left(k^{2}\right) & -0.85 \\ & -0.90\end{array}$ | $\begin{aligned} & 24^{3} \times 64, \beta=2.334, C_{S W}=1.398 \\ & \kappa_{\mathrm{val}}=0.13400 \end{aligned}$ |
| :---: | :---: | :---: |
| $\tan \delta(k)=$ |  |  |
| $\stackrel{\text { or }}{ }=$ |  | $\mathrm{H}\left(\mathrm{k}_{\mathrm{t}} ; \mathrm{k}_{\mathrm{t}}\right.$, Random Z2) $\mathrm{H}\left(\mathrm{k}_{\mathrm{t}}, \mathrm{k}_{\mathrm{t}}\right.$, Wall $)$ Luscher formula( $\mathrm{k}_{\mathrm{t}}$, Random Z2) Luscher formula $\left(\mathrm{k}_{\mathrm{t}}\right.$, CP-PACS $\left.(2005)\right)$ |

[Additional output: half-off-shell scattering amplitude $H(p ; k)$ ]

- Not only on-shell amplitude $H(k ; k)$ but also $H(p ; k)$ can be estimated
$\diamond H(p ; k)$ can be supplemental input to theoretical models of hadrons
$\diamond$ Effective range $r_{\text {eff }}$ can be extracted from $H(p ; k)$
$\gtreqless$ NB. $H(p ; k) / H(k ; k)$ is available below $4 \pi$ threshold, although there is no true inelastic threshold in quenched QCD (quenched artificial inelastic effects may appear)

$$
\begin{aligned}
& H_{L}(p ; k)=-\sum_{\mathbf{x} \in L^{3}} j_{0}(p x)\left(\Delta+k^{2}\right) \phi(\mathbf{x} ; k) \\
& H(p ; k) / H(k ; k)=H_{L}(p ; k) / H_{L}(k ; k) \\
& k \cot \delta(k)=a_{0}^{-1}+r_{\mathrm{eff}} k^{2}+O\left(k^{4}\right) \\
& r_{\text {eff }} \sim-\frac{2 k^{2} H^{\prime}+\sin ^{2} \delta(k)}{2 k \sin \delta(k) \cos \delta(k)} \\
& H^{\prime} \quad:=\left.\quad \partial_{p} 2 H(p ; k)\right|_{p^{2}=k^{2}} / H(k ; k)
\end{aligned}
$$

[Chiral extrapolation of $a_{0}$ ]
$a_{0}$ is extrapolated to the physical point using a ChPT motivated formula, ignoring chiral log due to our large pion masses

- Our result is consistent with $\operatorname{ChPT}(2001)$ and CP-PACS(2005)
$\diamond$ For definite comparison, more realistic data ( $N_{f}=2+1$ full QCD on the physical point) is needed

$$
\begin{aligned}
a_{0} / m_{\pi} & =A+B m_{\pi}^{2}+C m_{\pi}^{4}+O\left(m_{\pi}^{2} \log m_{\pi}^{2}\right) \\
k_{t}^{2} & =E_{k}^{2} / 4-m_{\pi}^{2} \\
k_{s}^{2} & =-\Delta \phi(\mathbf{x} ; k) / \phi(\mathbf{x} ; k)
\end{aligned}
$$


[Chiral extrapolation of $r_{\text {eff }}$ ]
$r_{\text {eff }}$ is extrapolated to the physical point using a ChPT motivated formula, ignoring chiral log due to our large pion masses

- Our result is consistent with CP-PACS(2005) at the simulation point, but underestimates $\operatorname{ChPT}(2001)$ and $\operatorname{NPLQCD}(2012)$ at the physical point
$\diamond$ For definite comparison, more realistic data ( $N_{f}=2+1$ full QCD on the physical point) is needed

[Remark: scattering amplitude in momentum space $H(p ; k)$ ]
- $H(p ; k)$ can also be calculated using LSZ reduction formula in momentum space, instead of laplacian $\Delta$. cf. J.Carbonell and V.A.Karmanov(2016)
$\diamond$ Care is needed. If we change the integration range of $H(p ; k)$ from $\infty$ to the interaction range $R$, a surface term appears.

$$
\begin{aligned}
H(p ; k): & -\int_{-\infty}^{\infty} d^{3} x e^{-i \mathbf{p} \cdot \mathbf{x}}\left(\Delta+k^{2}\right) \phi(\mathbf{x} ; k) \\
= & -\int_{-R}^{R} d^{3} x e^{-i \mathbf{p} \cdot \mathbf{x}}\left(\Delta+k^{2}\right) \phi(\mathbf{x} ; k) \\
& \Downarrow \quad \text { partial integration } \\
= & \left(p^{2}-k^{2}\right) \int_{-R}^{R} d^{3} x e^{-i \mathbf{p} \cdot \mathbf{x}} \phi(\mathbf{x} ; k) \\
& +[\text { surface term }] \frac{R}{-} R \\
& \\
& \mathrm{NB} \cdot \text { on the lattice, } p^{2} \rightarrow \tilde{p}^{2} \\
& \tilde{p}_{i}:=\frac{2}{a} \sin \frac{a p_{i}}{2}, \quad p_{i}=(2 \pi / L) n_{i}
\end{aligned}
$$



## 5 Summary

We evaluate a scattering length $a_{0}$ of $I=2 \pi \pi$ system in the quenched lattice QCD as a test bed. We utilize Bethe-Salpeter wave function not only "outside" the interaction range but also "inside" the interaction range

- Consistency is checked Our result using the scattering amplitude "inside" the interaction range agrees with the value of standard Lüscher's finite volume method using data "outside" the interaction range
- Additional output is obtained

A half-off-shell scattering amplitude $H(p ; k)$ is estimated by lattice QCD, which can be an additional input to theoretical models of hadrons, as a supplement to experiments
[Future work]
Apply our strategy to

- More realistic case ( $N_{f}=2+1$ full QCD on the physical point)
- More complicated system (other 2-body system with not only light quarks but also heavy quarks, and hopefully 3 -body system)

