# Stabilising complex Langevin simulations

#### Felipe Attanasio





In collaboration with B. Jäger

< □ > < □ > < □ > < □ > < □ >

## CLE: Motivation

## Description of QCD under different thermodynamical conditions



- Experimental investigations in progress (LHC, RHIC) and planned (FAIR)
- Perturbation theory only applicable at high temperature/density (asymptotic freedom)
- Full exploration requires non-perturbative (e.g. lattice) methods

イロト イヨト イヨト

## CLE: Motivation

## Description of QCD under different thermodynamical conditions

- Sign problem: chemical potential in Euclidean path integral  $\Rightarrow$  complex action
- Expectation values  $\Rightarrow$  precise cancellations of oscillating quantities
- In QCD: fermion determinant

$$[\det M(U,\mu)]^* = \det M(U,-\mu^*)$$

is complex for real chemical potential  $\boldsymbol{\mu}$ 

• Traditional Monte-Carlo methods unreliable for severe sign problem

イロト イボト イヨト イヨト

## CLE: Stochastic quantization

#### On the lattice

[Damgaard and Hüffel, Physics Reports]

イロト イヨト イヨト イヨト

• Evolve gauge links according to the Langevin equation

$$U_{x\mu}(\theta + \varepsilon) = \exp[X_{x\mu}] U_{x\mu}(\theta),$$

with the Langevin drift

$$X_{x\mu} = i\lambda^a (-\varepsilon D^a_{x\mu} S \left[ U(\theta) \right] + \sqrt{\varepsilon} \, \eta^a_{x\mu}(\theta)) \,,$$

 $\lambda^a$  are the Gell-Mann matrices,  $\varepsilon$  is the stepsize,  $\eta^a_{x\mu}$  are white noise fields satisfying

$$\langle \eta^a_{x\mu} \rangle = 0 \,, \quad \langle \eta^a_{x\mu} \eta^b_{y\nu} \rangle = 2 \delta^{ab} \delta_{xy} \delta_{\mu\nu} \,,$$

S is the QCD action and  $D^a_{x\mu}$  is defined as

$$D^{a}_{x\mu}f(U) = \left.\frac{\partial}{\partial\alpha}f(e^{i\alpha\lambda^{a}}U_{x\mu})\right|_{\alpha=0}$$

# CLE: Complexification I

## Complexification

[Aarts, Stamatescu, hep-lat/0807.1597]

・ロト ・回 ト ・ヨト ・ヨト

- Allow gauge links to be non-unitary:  $SU(3) \ni U_{x\mu} \to U_{x\mu} \in SL(3,\mathbb{C})$
- Use  $U_{x\mu}^{-1}$  instead of  $U_{x\mu}^{\dagger}$  as
  - keeps the action/observables holomorphic;
  - coincide on SU(3), but on SL(3, C) it is U<sup>-1</sup> that represents the backwards-pointing link.
- Circumvents the sign problem by doubling the degrees of freedom

similar to 
$$\int_{-\infty}^{\infty} dx \, e^{-x^2} \to \sqrt{\int r \, dr d\theta \, e^{-r^2}}$$

## CLE: Complexification II – Gauge cooling

Gauge cooling

[Seiler, Sexty, Stamatescu, hep-lat/1211.3709]

< ロ > < 同 > < 回 > < 回 >

- SL(3, C) is not compact ⇒ gauge links can get arbitrarily far from SU(3)
- During simulations monitor the distance from the unitary manifold with

$$d = \frac{1}{N_s^3 N_\tau} \sum_{x,\mu} \operatorname{Tr} \left[ U_{x\mu} U_{x\mu}^{\dagger} - \mathbb{1} \right]^2 \ge 0$$

 $\bullet\,$  Use gauge transformations to decrease d

$$U_{x\mu} \to \Lambda_x U_{x\mu} \Lambda_{x+\mu}^{-1}$$

necessary, but not always sufficient

## CLE: Complexification II - Gauge cooling

#### Gauge cooling (mild sign problem)



Left: Langevin time history of Polyakov loop Right: Langevin time history of unitarity norm

4 A 1 1 4 F

## CLE: Complexification III – Dynamic stabilisation

Dynamic stabilisation

[Attanasio, Jäger, hep-lat/1607.05642]

イロン イ団 とく ヨン イヨン

• New term in the drift to reduce the non-unitarity of  $U_{x,\nu}$ 

$$X_{x\nu} = i\lambda^a \left( -\epsilon D^a_{x,\nu} S - \epsilon \alpha_{\rm DS} M^a_x + \sqrt{\epsilon} \eta^a_{x,\nu} \right) \,.$$

with  $\alpha_{\rm DS}$  being a control coefficient

- $M_x^a$ : constructed to be irrelevant in the continuum limit
- $M^a_x$  only depends on  $U_{x,\nu}U^{\dagger}_{x,\nu}$  (non-unitary part)

## CLE: Complexification III - Dynamic stabilisation

### Dynamic stabilisation (mild sign problem)



Left: Langevin time history of Polyakov loop Right: Langevin time history of unitarity norm (notice log scale!)

A (10) × A (10) × A

#### Complex Langevin Equation

## CLE: Complexification III - Dynamic stabilisation

#### Dynamic stabilisation



Unitarity norm as a function of  $\alpha_{\rm DS}$  for HDQCD at  $\beta=5.8$  and  $\kappa=0.04$ 

Stabilising complex Langevin simulations

イロト イヨト イヨト イヨト

Felipe Attanasio

## Observables considered

• "Real part" of the Polyakov loop

$$P^{s} = \frac{1}{2} \left( \langle P \rangle + \langle P^{-1} \rangle \right) \,,$$

• Chiral condensate (for dynamical quarks)

$$\langle \overline{\psi}\psi\rangle = \frac{T}{V}\frac{\partial\ln Z}{\partial m}$$

• Quark density

$$\langle n \rangle = \frac{T}{V} \frac{\partial \ln Z}{\partial \mu}$$

æ

イロト イヨト イヨト イヨト

#### HDQCD

## Heavy-dense QCD

#### Heavy-dense approximation

[Aarts, Stamatescu, hep-lat/0807.1597]

イロト イヨト イヨト イヨト

 $\bullet\,$  Heavy quarks  $\to$  quarks evolve only in Euclidean time direction:

$$\det M(U,\mu) = \prod_{\vec{x}} \left\{ \det \left[ 1 + (2\kappa e^{\mu})^{N_{\tau}} \mathcal{P}_{\vec{x}} \right]^2 \det \left[ 1 + \left( 2\kappa e^{-\mu} \right)^{N_{\tau}} \mathcal{P}_{\vec{x}}^{-1} \right]^2 \right\}$$

Polyakov loop

$$\mathcal{P}_{\vec{x}} = \prod_{\tau} U_4(\vec{x},\tau)$$

- Exhibits the sign problem:  $[\det M(U,\mu)]^* = \det M(U,-\mu^*)$
- Transition to higher densities (at T=0 it happens at  $\mu=\mu_c^*\equiv -\ln(2\kappa)$ )

3

## Comparison of DS and GC

 $\alpha_{\rm DS}$  scan of the Polyakov loop, with results from gauge cooling

HDQCD



 $\beta = 5.8, \, \mu/\mu_c^0 = 0.96, \, \kappa = 0.04, \, V = 8^3 \times 20$ 

Wide region of  $\alpha_{\rm DS}$  where DS agrees with GC with low unitarity norm

## Histograms I (HDQCD)

#### DS reduces only imaginary part of the Langevin drift



HDOCD

Histograms of the Langevin drift Left: Imaginary part is clearly affected by larger  $\alpha_{\rm DS}$ Right: For  $\alpha_{\rm DS}$  large enough, the real part of the drift is essentially unchanged

| _ |        | · · · · |       |
|---|--------|---------|-------|
|   | lino - | /\++    | 22010 |
|   | nue :  | ALLAI   | Iasio |
|   |        |         |       |

イロト イヨト イヨト

14 / 24

# Histograms II (HDQCD)

#### DS decreases with the lattice spacing



HDQCD

Histograms for different values of  $\beta$ Left: Real part of the drift changes very little (*a* is changing) Right: DS term decreases with *a* (higher  $\beta$ )

イロト イヨト イヨト

15 / 24

## Deconfinement in HDQCD

Good agreement with reweighting across the deconfinement region for fixed  $\mu$ 

HDQCD



Polyakov loop as a function of the inverse coupling  $\beta$  for HDQCD

|           | · · · · |       |
|-----------|---------|-------|
| lino -    | /\++    | 22010 |
| <br>nue : | ALLAI   | Iasio |
|           |         |       |

(人間) とうき くうう

## Deconfinement in HDQCD

Good agreement with reweighting - even when GC converges to the wrong limit

HDQCD



Spatial plaquette as a function of the inverse coupling  $\beta$  for HDQCD

< ロ > < 同 > < 回 > < 回 >

## Dynamical fermions

#### Staggered quarks

• The Langevin drift for  ${\cal N}_f$  flavours of staggered quarks

$$D^a_{x,\nu}S_F \equiv D^a_{x,\nu} \ln \det M(U,\mu)$$
$$= \frac{N_F}{4} \operatorname{Tr} \left[ M^{-1}(U,\mu) D^a_{x,\nu} M(U,\mu) \right]$$

• Inversion is done with conjugate gradient method

J.

• Trace is evaluated by bilinear noise scheme – introduces imaginary component even for  $\mu = 0!$ 

イロン イ団 とく ヨン イヨン

Staggered quarks  $(\beta = 5.6, m = 0.025, N_F = 4)$ 

Comparison between CLE + DS runs and HMC (results by P. de Forcrand)



Grey band represents results from HMC simulations  $\alpha_{\rm DS}$  scan of the chiral condensate for a volume of  $6^4$ 

| - <b>F</b> - 11 |     |    |     |     |   |
|-----------------|-----|----|-----|-----|---|
| - Felu          | ne. | Аt | taı | יבר | h |
|                 | P   |    |     |     |   |

< □ > < 同 > < 回 > < 回 >

#### Staggered quarks

Staggered quarks ( $\beta = 5.6$ , m = 0.025,  $N_F = 4$ )

#### Comparison between CLE + DS runs and HMC (results by P. de Forcrand)



Grey band represents results from HMC simulations Langevin step size extrapolation of the chiral condensate for a volume of  $8^4$ 

| - Folu | ne / | 1++- | n ncio |
|--------|------|------|--------|
|        |      |      | 110010 |
|        |      |      |        |

A (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10) × (10)

# Staggered quarks ( $\beta = 5.6, m = 0.025, N_F = 4$ )

## Comparison between CLE + DS runs and HMC (results by P. de Forcrand)



Grey band represents results from HMC simulations Langevin step size extrapolation of the plaquette for a volume of  $12^4\,$ 

| - <b>-</b> |      |       |       |
|------------|------|-------|-------|
| - Feli     | ne / | \## a | nasio |
|            | pe,  |       |       |

(人間) トイヨト イヨト

#### Staggered quarks

Staggered quarks ( $\beta = 5.6$ , m = 0.025,  $N_F = 4$ )

Comparison between CLE + DS runs and HMC (results by P. de Forcrand)

|          | Plac       | luette      | $\overline{\psi}$ | $\psi$    |
|----------|------------|-------------|-------------------|-----------|
| Volume   | HMC        | Langevin    | HMC               | Langevin  |
| $6^{4}$  | 0.58246(8) | 0.582452(4) | 0.1203(3)         | 0.1204(2) |
| $8^{4}$  | 0.58219(4) | 0.582196(1) | 0.1316(3)         | 0.1319(2) |
| $10^{4}$ | 0.58200(5) | 0.58201(4)  | 0.1372(3)         | 0.1370(6) |
| $12^{4}$ | 0.58196(6) | 0.58195(2)  | 0.1414(4)         | 0.1409(3) |

Expectation values for the plaquette and chiral condensate for full QCD Langevin results have been obtained after extrapolation to zero step size

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

# Staggered quarks ( $\beta = 5.6, m = 0.025, N_F = 2$ )





Vertical lines indicate position of critical chemical potential for each temperature Left: Density as a function of chemical potential Right: Pressure as a function of chemical potential

A (1) < A (1)</p>

## Summary and Outlook

#### Summary

- Dynamic Stabilisation
  - improves convergence of complex Langevin simulations
  - allows for long runs
- HDQCD results with DS verified against reweighting across the deconfinement transition
- $\bullet\,$  Very good agreement with HMC for full QCD at  $\mu=0$

#### Outlook

• Determine the QCD phase diagram, with particular attention phase boundaries and characteristics

イロト イヨト イヨト イヨト