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CLE: Motivation

Description of QCD under different thermodynamical conditions J

@ Experimental investigations
in progress (LHC, RHIC)

St Clen and planned (FAIR)
Plasma .
Critical point? @ Perturbation theory only
T o applicable at high
K temperature/density
R Nuclear matter (asymptotic freedom)

A
A} . .
Hadrons ;)/ . e Full exploration requires
. E, -~ Colour non-perturbative (e.g.

" /Superconductor? lattice) methods

>
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Complex Langevin Equation

CLE: Motivation

Description of QCD under different thermodynamical conditions

@ Sign problem: chemical potential in Euclidean path integral = complex
action

@ Expectation values = precise cancellations of oscillating quantities
@ In QCD: fermion determinant

[det M (U, pw)]* = det M(U, —p™)

is complex for real chemical potential p

@ Traditional Monte-Carlo methods unreliable for severe sign problem
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CLE: Stochastic quantization

On the lattice [Damgaard and Hiiffel, Physics Reports]J

@ Evolve gauge links according to the Langevin equation
Upp(0 +€) = exp [ X5 Uz (0) ,

with the Langevin drift
Xx# = i)\a(_ngpS [U(G)} + \ﬁngp‘(e)) )

A" are the Gell-Mann matrices, ¢ is the stepsize, 77, are white noise fields
satisfying

<ng,u> = 07 <ngungu> = 25@1)61’95#1’ ’
S is the QCD action and Dgu is defined as

8 la a
7.]0(6 A U.LM)

DL, f(U) = 5o

a=0
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CLE: Complexification |

Complexification [Aarts, Stamatescu, hep-lat/0807.1597] J

o Allow gauge links to be non-unitary: SU(3) > U,, — U,, € SL(3,C)

o Use U,,! instead of U], as

o keeps the action/observables holomorphic;
o coincide on SU(3), but on SL(3,C) it is U~" that represents the
backwards-pointing link.

o Circumvents the sign problem by doubling the degrees of freedom

similar to / dre=® = “/rdrd@e—rz
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CLE: Complexification Il — Gauge cooling

Gauge cooling [Seiler, Sexty, Stamatescu, hepflat/1211.3709]J

@ SL(3,C) is not compact = gauge links can get arbitrarily far from SU(3)
@ During simulations monitor the distance from the unitary manifold with
d= 2 I 2>
=y 22 T (VUL = 1] 20
STT

@ Use gauge transformations to decrease d
-1
Uzp — AxeMALE-‘rLL

necessary, but not always sufficient
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CLE: Complexification Il — Gauge cooling

Gauge cooling (mild sign problem) J
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Left: Langevin time history of Polyakov loop
Right: Langevin time history of unitarity norm
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CLE: Complexification Il — Dynamic stabilisation

Dynamic stabilisation [Attanasio, Jager, hep-lat/1607.05642] |

@ New term in the drift to reduce the non-unitarity of U, ,
Xow = iX* (—eDg S — eaps My + Ve ) .

with apg being a control coefficient
@ MZ: constructed to be irrelevant in the continuum limit

e M only depends on U, , U] , (non-unitary part)

Felipe Attanasio Stabilising complex Langevin simulations 8 /24



CLE: Complexification Il — Dynamic stabilisation

Dynamic stabilisation (mild sign problem) J
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Left: Langevin time history of Polyakov loop
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CLE: Complexification Il — Dynamic stabilisation

Dynamic stabilisation
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Unitarity norm as a function of apg for HDQCD at 5 = 5.8 and k = 0.04
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Observables considered

@ "Real part” of the Polyakov loop
1 _
P = (P)+(P7h),

o Chiral condensate (for dynamical quarks)

— TOolnZ
@ Quark density
TOolnZ
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Heavy-dense QCD

Heavy-dense approximation [Aarts, Stamatescu, hep-lat/0807.1507] |

@ Heavy quarks — quarks evolve only in Euclidean time direction:
2 2
det M(U, ) = H {det [1 + (2&@“)]\77 Pfi| det [1 + (2/@6_“)NT 735_1} }

@ Polyakov loop

Pz =[] U@, 7)

o Exhibits the sign problem: [det M (U, u)]* = det M (U, —p*)
@ Transition to higher densities (at 7' = 0 it happens at u = u} = —In(2k))
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Comparison of DS and GC

aps scan of the Polyakov loop, with results from gauge cooling J
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DS reduces only imaginary part of the Langevin

Histograms | (HDQCD)

drift

HDQCD, 8 x 20, = 5.8, k = 0.04, s/p = 0.96

HDQCD, 8 x 20, = 5.8, k = 0.04, s/p = 0.96
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Histograms of the Langevin drift
Left: Imaginary part is clearly affected by larger apg
Right: For apg large enough, the real part of the drift is essentially unchanged
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Histograms Il (HDQCD)

DS decreases with the lattice spacing

HDQCD, 8 x 20, § = 5.8, k = 0.04, u/u = 0.96 HDQCD, 8 x 20, § = 5.8, k = 0.04, s/u = 0.96
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Histograms for different values of g
Left: Real part of the drift changes very little (a is changing)
Right: DS term decreases with a (higher )
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Deconfinement in HDQCD

Good agreement with reweighting across the deconfinement region for fixed p )

HDQCD 6%, k = 0.12, 11/p = 0.6
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Deconfinement in HDQCD

Good agreement with reweighting — even when GC converges to the wrong limit )

HDQCD 6%, k = 0.12, 11/p = 0.6
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Dynamical fermions

Staggered quarks

@ The Langevin drift for N; flavours of staggered quarks

D¢, Sk = Dg, Indet M(U, )

N
= " Te [M7 (U w)Dg , MU )]

@ Inversion is done with conjugate gradient method

@ Trace is evaluated by bilinear noise scheme — introduces imaginary
component even for p = 0!
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Staggered quarks (6 = 5.6, m = 0.025, Np = 4)

Comparison between CLE + DS runs and HMC (results by P. de Forcrand)
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Grey band represents results from HMC simulations
apg scan of the chiral condensate for a volume of 6%
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Staggered quarks (6 = 5.6, m = 0.025, Np = 4)

Comparison between

CLE + DS runs and HMC (results

by P. de Forcrand)
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Staggered quarks (6 = 5.6, m = 0.025, Np = 4)

Comparison between CLE + DS runs and HMC (results by P. de Forcrand)
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Staggered quarks (6 = 5.6, m = 0.025, Np = 4)

Comparison between CLE + DS runs and HMC (results by P. de Forcrand)

Plaquette Py
Volume HMC Langevin HMC Langevin
6 0.58246(8) 0.582452(4) 0.1203(3) 0.1204(2)
84 0.58219(4) 0.582196(1) 0.1316(3) 0.1319(2)
104 0.58200(5)  0.58201(4) 0.1372(3) 0.1370(6)
124 0.58196(6) 0.58195(2) 0.1414(4) 0.1409(3)

Expectation values for the plaquette and chiral condensate for full QCD
Langevin results have been obtained after extrapolation to zero step size
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Staggered quarks (5 = 5.6, m = 0.025, Np = 2)

Preliminary results at 1z > 0 (not extrapolated to zero step size) J
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Vertical lines indicate position of critical chemical potential for each temperature
Left: Density as a function of chemical potential
Right: Pressure as a function of chemical potential
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Summary and Outlook

Summary

@ Dynamic Stabilisation

e improves convergence of complex Langevin simulations
e allows for long runs

o HDQCD results with DS verified against reweighting across the
deconfinement transition

o Very good agreement with HMC for full QCD at =0

Outlook

@ Determine the QCD phase diagram, with particular attention phase
boundaries and characteristics
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