Contribution to the anomalous magnetic moment of the muon from the disconnected hadronic vacuum polarization with four-flavors of highly-improved staggered quarks

Shuhei Yamamoto (U. Utah) Carleton DeTar (U. Utah), Aida X. El-Khadra (Illinois U. Urbana), Craig McNeile (Plymouth U.), Ruth S. Van de Water (Fermilab), Alejandro Vaquero (U. Utah) sy3394@physics.utah.edu

Introduction

We describe the first steps in a computation of the contribution to the anomalous magnetic moment of the muon from the disconnected part of the hadronic vacuum polarization (HVP). We use the highly-improved staggered-quark (HISQ) formulation for the current density with gauge configurations generated with four flavors of HISQ sea quarks. Here we present our methodology and preliminary result from one lattice spacing $a \sim 0.15$ fm.

The hadronic vacuum polarization at zero spatial momentum is given by

Parameter Optimization

The calculation presented here is carried out on a single gauge-field ensemble of size $32^3 \times 48$ with an approximate lattice spacing of 0.15 fm. There are several parameters in this simulation that need to be tuned to achieve the target uncertainty in the current-current correlation function at minimum computational cost. After tuning, the optimum parameter values are found to be

- The number of eigenpairs for deflation: 350
- The precision of the eigensolution: $|D_{eo}D_{eo}\tilde{v}_n^{(e)} \lambda_n^2\tilde{v}_n^{(e)}| < 1 \times 10^{-9}$ where $\tilde{v}_n^{(e)}$ and λ_n are the estimated n^{th} eigenpair

Figure 1: The Feynman diagram for the contribution where to a_{μ} from the disconnected part of HVP. The fermion loops of different flavor f and f' are connected by virtual gluons and sea quarks (not shown).

 $\Pi^{\mu\nu}(q^2) = q^2 \Pi(q^2)$ $= \int d^4 x e^{iqt} \left\langle J^{\mu}(t, \vec{x}) J^{\nu}(0) \right\rangle$

The contribution to the anomalous magnetic moment is

 $a_{\mu}^{\rm HVP} = 4\alpha^2 \int_0^\infty dq^2 f(q^2) \hat{\Pi}(q^2)$

where $\hat{\Pi}(q^2) = \Pi(q^2) - \Pi(0)$ $\Pi^{ii}(q^2) = q^2 \Pi(q^2)$ $f(q^2) = \frac{m_{\mu}^2 q^2 A^3 (1 - q^2 A)}{1 + m_{\mu}^2 q^2 A^2}$ $A = \frac{\sqrt{q^4 + 4m_{\mu}^2 q^2} - q^2}{2m_{\mu}^2 a^2}$

Motivation

- The residual of fine and sloppy solve: 2.70×10^{-2} and 1×10^{-5} , respectively
- The number of fine and sloppy solves per configuration: 72 and 1408, respectively.

Result

 $C_{\rm disc}(t)$ 758configurations computed is using gauge Fig. 2 with physical sea-quark shows statismasses. taking tically significant signal for $C_{\rm disc}(t)$ Z_V 1. =

- The goal is to compute the HVP with the precision needed to match the expected experimental precision.
- We aim here to improve on the precision of the disconnected HVP.
- We employ HISQ with 2 + 1 + 1 flavors for both sea and valence quarks to help achieve this goal.

Methodology

We define the disconnected correlator

$$C_{\rm disc}(t) = \frac{1}{48} \sum_{i=1}^{3} \sum_{\vec{x}/a} Z_V^2 \langle \langle J_i(t, \vec{x}) \rangle_F \langle J_i(0) \rangle_F \rangle_G \tag{1}$$

Then,

$\Pi^{\text{disc HVP}}(q^2) = a^4 \sum_t e^{iqt} C_{\text{disc}}(t)$

In Eq. (1), V is the spatial lattice volume, and F indicates the integration over the fermionic degrees of freedom, which is performed explicitly while

Figure 2: Time-slice disconnected current density correlator vs. the temporal separation in lattice units.

Outlook

The analysis of correlator and determination of a_{μ}^{HVP} is in progress. For the next steps, we will increase the statistics, incorporate the renormalization factor Z_V , and continue to finer lattices.

averaging over gauge configurations is indicated by G. Z_V is the vectorcurrent renormalization factor. $J_i(r)$ is the one-link current with $\Gamma_{\mu} \otimes$ $\Gamma_t = \gamma_{\mu} \otimes \mathbf{1}$, which in one-component basis,

$$J_{\mu}(r) = \frac{i}{2} \sum_{f} Q_{f} \bar{\chi}_{f}(r) \alpha_{\mu}(r) U_{\mu}(r) \chi_{f}(r+\hat{\mu}) + h.c.$$

Here, Q_f is the charge of the quark of flavor f in units of the electron charge e. We use stochastic estimation of the current density, the truncated solver method combined with low-mode deflation, and dilution with stride 2 to reduce the variance. The low-mode part is computed exactly by constructing it from the eigenvectors of D.

References

T. Blum et al. "Calculation of the Hadronic Vacuum Polarization Disconnected Contribution to the Muon Anomalous Magnetic Moment". In: *Phys. Rev. Lett.* 116 (23 June 2016), p. 232002. DOI: 10.1103/PhysRevLett.116.232002. URL: https://link.aps. org/doi/10.1103/PhysRevLett.116.232002.