Contribution to the anomalous magnetic moment of the muon from the disconnected hadronic vacuum polarization with four-flavors of highly-improved staggered quarks

Shuhei Yamamoto (U. Utah)

Carleton DeTar (U. Utah), Aida X. El-Khadra (Illinois U. Urbana),

Craig McNeile (Plymouth U.), Ruth S. Van de Water (Fermilab), Alejandro Vaquero (U. Utah)
sy3394@physics.utah.edu

Introduction

We describe the first steps in a computation of the contribution to the anomalous magnetic moment of the muon from the disconnected part of the hadronic vacuum polarization (HVP). We use the highly-improved staggered-quark (HISQ) formulation for the current density with gauge configurations generated with four flavors of HISQ sea quarks. Here we present our methodology and preliminary result from one lattice spacing $a \sim 0.15 \mathrm{fm}$.

Figure 1: The Feynman diagram for the contribution to a_{μ} from the disconnected part of HVP. The fermion loops of different flavor f and f^{\prime} are connected by virtual gluons and sea quarks (not shown).

Motivation

- The goal is to compute the HVP with the precision needed to match the expected experimental precision.
- We aim here to improve on the precision of the disconnected HVP.
- We employ HISQ with $2+1+1$ flavors for both sea and valence quarks to help achieve this goal.

Methodology

We define the disconnected correlator

$$
\begin{equation*}
C_{\mathrm{disc}}(t)=\frac{1}{48} \sum_{i=1}^{3} \sum_{\vec{x} / a} Z_{V}^{2}\left\langle\left\langle J_{i}(t, \vec{x})\right\rangle_{F}\left\langle J_{i}(0)\right\rangle_{F}\right\rangle_{G} \tag{1}
\end{equation*}
$$

Then,

$$
\Pi^{\mathrm{disc} \operatorname{HVP}}\left(q^{2}\right)=a^{4} \sum_{t} e^{i q t} C_{\mathrm{disc}}(t)
$$

In Eq. (1), V is the spatial lattice volume, and F indicates the integration over the fermionic degrees of freedom, which is performed explicitly while averaging over gauge configurations is indicated by $G . Z_{V}$ is the vectorcurrent renormalization factor. $J_{i}(r)$ is the one-link current with $\Gamma_{\mu} \otimes$ $\Gamma_{t}=\gamma_{\mu} \otimes \mathbf{1}$, which in one-component basis,

$$
J_{\mu}(r)=\frac{i}{2} \sum_{f} Q_{f} \bar{\chi}_{f}(r) \alpha_{\mu}(r) U_{\mu}(r) \chi_{f}(r+\hat{\mu})+h . c .
$$

Here, Q_{f} is the charge of the quark of flavor f in units of the electron charge e. We use stochastic estimation of the current density, the truncated solver method combined with low-mode deflation, and dilution with stride 2 to reduce the variance. The low-mode part is computed exactly by constructing it from the eigenvectors of $I D$.

Parameter Optimization

The calculation presented here is carried out on a single gauge-field ensemble of size $32^{3} \times 48$ with an approximate lattice spacing of 0.15 fm . There are several parameters in this simulation that need to be tuned to achieve the target uncertainty in the current-current correlation function at minimum computational cost. After tuning, the optimum parameter values are found to be

- The number of eigenpairs for deflation: 350
- The precision of the eigensolution: $\left|D_{e o} D_{e o} \tilde{v}_{n}^{(e)}-\lambda_{n}^{2} \tilde{v}_{n}^{(e)}\right|<1 \times$ 10^{-9} where $\tilde{v}_{n}^{(e)}$ and λ_{n} are the estimated $n^{\text {th }}$ eigenpair
- The residual of fine and sloppy solve: 2.70×10^{-2} and 1×10^{-5}, respectively
- The number of fine and sloppy solves per configuration: 72 and 1408 , respectively.

Figure 2: Time-slice disconnected current density correlator vs. the temporal separation in lattice units.

Outlook

The analysis of correlator and determination of a_{μ}^{HVP} is in progress. For the next steps, we will increase the statistics, incorporate the renormalization factor Z_{V}, and continue to finer lattices.

References

[1] T. Blum et al. "Calculation of the Hadronic Vacuum Polarization Disconnected Contribution to the Muon Anomalous Magnetic Moment". In: Phys. Rev. Lett. 116 (23 June 2016), p. 232002. DOI: 10.1103/PhysRevLett.116.232002. URL: https://link.aps. org/doi/10.1103/PhysRevLett.116.232002.

