Beyond the Standard Model Kaon Mixing with physical light quarks

Julia Kettle¹

Peter Boyle¹, Nicolas Garron², Renwick Hudspith³, Ava Khamseh¹, Tobias Tsang¹

RBC-UKQCD ¹University of Edinburgh ²University of Liverpool ³York University

Lattice 2018, July 2018

< □ > < @ > < 클 > < 클 > · 클 = ∽ 역 ↔ 1/24

The RBC & UKQCD collaborations

BNL and BNL/RBRC

Yasumichi Aoki (KEK) Mattia Bruno Taku Izubuchi Yong-Chull Jang Chulwoo Jung Christoph Lehner Meifeng Lin Aaron Meyer Hiroshi Ohki Shigemi Ohka (KEK) Amarjit Soni

UC Boulder

Oliver Witzel Columbia University

Ziyuan Bai Norman Christ Duo Guo Christopher Kelly Bob Mawhinney Masaaki Tomii Jiqun Tu Bigeng Wang Tianle Wang Evan Wickenden Yidi Zhao

University of Connecticut

Tom Blum Dan Hoying (BNL) Luchang Jin (RBRC) Cheng Tu

Edinburgh University

Peter Boyle Guido Cossu Luigi Del Debbio Tadeusz Janowski Richard Kenway Julia Kettle Fionn O'haigan Brian Pendleton Antonin Portelli Tobias Tsang Azusa Yamaguchi

<u>KEK</u>

Julien Frison

University of Liverpool

Nicolas Garron

<u>MIT</u>

David Murphy

Peking University

Xu Feng

University of Southampton

Jonathan Flynn Vera Guelpers James Harrison Andreas Juettner James Richings Chris Sachrajda

Stony Brook University

Jun-Sik Yoo Sergey Syritsyn (RBRC)

York University (Toronto)

Renwick Hudspith

Table of contents

<ロ > < 圕 > < 臣 > < 臣 > 三日 のへの 3/24

Kaon Mixing in the Standard Model

- Oscillation of K^0 to \bar{K}^0
- One-loop FCNC
- Mediated by W^{\pm}
- Related to indirect CP violation

- OPE separates out a long-distance 4quark operator
- Matrix elements of $O^{\Delta S=2}$ calculated with LQCD

 $D^{\Delta S=2} = [\bar{s}_a \gamma_\mu (1-\gamma_5) d_a] [\bar{s}_b \gamma_\mu (1-\gamma_5) d_b]$

Beyond the Standard Model

Generalized Weak Hamiltonian:

$$\mathcal{H}^{\Delta S=2} = \sum_{i=1}^{5} C_i(\mu)O_i + \sum_{i=1}^{3} \tilde{C}_i(\mu)\tilde{O}_i$$

Basis of 5 model independent parity-even four-quark operators.

$$O_{1} = [\bar{s}_{a}\gamma_{\mu}(1-\gamma_{5})d_{a}][\bar{s}_{b}\gamma_{\mu}(1-\gamma_{5})d_{b}]$$

$$O_{2} = [\bar{s}_{a}(1-\gamma_{5})d_{a}][\bar{s}_{b}(1-\gamma_{5})d_{b}]$$

$$O_{3} = [\bar{s}_{a}(1-\gamma_{5})d_{b}][\bar{s}_{b}(1-\gamma_{5})d_{a}]$$

$$O_{4} = [\bar{s}_{a}(1-\gamma_{5})d_{a}][\bar{s}_{b}(1+\gamma_{5})d_{b}]$$

$$O_{5} = [\bar{s}_{a}(1-\gamma_{5})d_{b}][\bar{s}_{b}(1+\gamma_{5})d_{a}]$$

Past calculations by SWME¹, ETM ² and RBC-UKQCD ³.

³Garron,Hudspith,Lytle 16, Blum et al 14

¹Jang et al 15, Bae et al 14

²Carrasco et al 15,Bertone et al 10

Simulations

2+1f DWF QCD with Iwasaki Gauge Action

- 3 lattice spacings
- 2 ensembles with physical pions
- New: $a^{-1} = 2.774 GeV \ m_{\pi} \approx 230 MeV$

name	L/a	T/a	kernel	source	a^{-1} [GeV]	m_{π} [MeV]	$n_{configs}$	am_l^{uni}	am_s^{sea}	am_s^{val}	am_s^{phys}
C0	48	96	М	Z2GW	1.7295(38)	139	90	0.00078	0.0362	0.0358	0.03580(16)
C1	24	64	S	Z2W	1.7848(50)	340	100	0.005	0.04	0.03224	0.03224(18)
M0	64	128	М	Z2GW	2.3586(70)	139	82	0.000678	0.02661	0.0254	0.02539(17)
M1	32	64	S	Z2GW	2.3833(86)	303	83	0.004	0.03	0.02477	0.02477(18)
M2	32	64	S	Z2GW	2.3833(86)	360	76	0.006	0.03	0.02477	0.02477(18)
F1	48	96	М	Z2GW	2.774(10)	234	98	0.002144	0.02144	0.02132	0.02132(17)

M and F stand for coarse, medium and fine, respectively, M and S for Moebius and Shamir kernels. Propagators had either Z2 wall (Z2W) or Z2 Gaussian Wall (Z2GW) sources, with latter including source smearing.

Simulations

2+1f DWF QCD with Iwasaki Gauge Action

- 3 lattice spacings
- 2 ensembles with physical pions
- New: $a^{-1} = 2.774 GeV \ m_{\pi} \approx 230 MeV$

name	L/a	T/a	kernel	source	a^{-1} [GeV]	$m_{\pi}[\text{MeV}]$	$n_{configs}$	am_l^{uni}	am_s^{sea}	am_s^{val}	am_s^{phys}
C0	48	96	М	Z2GW	1.7295(38)	139	90	0.00078	0.0362	0.0358	0.03580(16)
C1	24	64	S	Z2W	1.7848(50)	340	100	0.005	0.04	0.03224	0.03224(18)
M0	64	128	М	Z2GW	2.3586(70)	139	82	0.000678	0.02661	0.0254	0.02539(17)
M1	32	64	S	Z2GW	2.3833(86)	303	83	0.004	0.03	0.02477	0.02477(18)
M2	32	64	S	Z2GW	2.3833(86)	360	76	0.006	0.03	0.02477	0.02477(18)
F1	48	96	М	Z2GW	2.774(10)	234	98	0.002144	0.02144	0.02132	0.02132(17)

M and F stand for coarse, medium and fine, respectively, M and S for Moebius and Shamir kernels. Propagators had either Z2 wall (Z2W) or Z2 Gaussian Wall (Z2GW) sources, with latter including source smearing.

Simulations

2+1f DWF QCD with Iwasaki Gauge Action

- 3 lattice spacings
- 2 ensembles with physical pions
- New: $a^{-1} = 2.774 GeV \ m_{\pi} \approx 230 MeV$

name	L/a	T/a	kernel	source	a^{-1} [GeV]	m_{π} [MeV]	$n_{configs}$	am_l^{uni}	am_s^{sea}	am_s^{val}	am_s^{phys}
C0	48	96	М	Z2GW	1.7295(38)	139	90	0.00078	0.0362	0.0358	0.03580(16)
C1	24	64	S	Z2W	1.7848(50)	340	100	0.005	0.04	0.03224	0.03224(18)
M0	64	128	М	Z2GW	2.3586(70)	139	82	0.000678	0.02661	0.0254	0.02539(17)
M1	32	64	S	Z2GW	2.3833(86)	303	83	0.004	0.03	0.02477	0.02477(18)
M2	32	64	S	Z2GW	2.3833(86)	360	76	0.006	0.03	0.02477	0.02477(18)
F1	48	96	М	Z2GW	2.774(10)	234	98	0.002144	0.02144	0.02132	0.02132(17)

M and F stand for coarse, medium and fine, respectively, M and S for Moebius and Shamir kernels. Propagators had either Z2 wall (Z2W) or Z2 Gaussian Wall (Z2GW) sources, with latter including source smearing.

Source-Sink Time Separations

- Z_2 (Gaussian) wall sources at every other time slice.
- Several different ΔT
- Bin all data with same ΔT

Quantities Measured

The SM bag parameters:

$$B_{1}(\mu) = \frac{\langle \bar{P}|\mathcal{O}_{1}(\mu)|P\rangle}{\frac{8}{3}m_{K}^{2}f_{K}^{2}} \qquad B_{i>1}(\mu) = \frac{(m_{s}(\mu) + m_{d}(\mu))^{2}}{N_{i}m_{K}^{4}f_{K}^{2}} \langle \bar{P}|\mathcal{O}_{i}(\mu)|P\rangle$$

Define a ratio parameter:

$$R_i(\frac{m_P^2}{f_P^2}, a^2, \mu) = \left[\frac{f_K^2}{m_K^2}\right]_{exp} \left[\frac{m_P^2}{f_P^2} \frac{\langle \bar{P} | \mathcal{O}_i(\mu) | P \rangle}{\langle \bar{P} | \mathcal{O}_1(\mu) | P \rangle}\right]_{lat}$$

such that when $a^2 \to 0$ and $m_P^2/f_P^2 \to m_K^2/f_K^2$ it reduces to:

$$R_i(\mu) = \frac{\langle \bar{K} | \mathcal{O}_i(\mu) | K \rangle}{\langle \bar{K} | \mathcal{O}_1(\mu) | K \rangle}$$

Correlator Fitting

Examples of the fits of correlation functions to measure lattice quantites.

Non-Perturbative Renormalisation

 We use the Rome-Southampton method with non-exceptional kinematics (RI-SMOM).

$$O_{i}(\mu)^{\overline{MS}} = C_{ij}^{\overline{MS} \leftarrow MOM}(\mu) \left(\lim_{a^{2} \to 0} \frac{Z_{jk}^{RI}(\mu)}{Z_{q}^{2}} O_{k}(a) \right) \qquad p_{1} \qquad p_{1}$$

$$Z^{RI}(\mu) \hat{P}[\Lambda(p^{2})]|_{p^{2} = \mu^{2}} = \Lambda(p^{2})^{tree} \qquad p_{1} \neq p_{2}$$

$$p_{1}^{2} = p_{2}^{2} = (p_{1} - p_{2})^{2}$$

ma

ma

Non-Perturbative Renormalisation

Block diagonal structure due to chiral symmetry

$$Z_{O^{\Delta S=2}} = \begin{pmatrix} Z_{11} & 0 & 0 & 0 & 0 \\ 0 & Z_{22} & Z_{23} & 0 & 0 \\ 0 & Z_{32} & Z_{33} & 0 & 0 \\ 0 & 0 & 0 & Z_{44} & Z_{45} \\ 0 & 0 & 0 & Z_{54} & Z_{55} \end{pmatrix}$$

 Define two intermediate schemes (γ, γ) and (𝔅, 𝔅) distiguished by their projectors. The difference between them allows us to quantify a systematic error Simultaneously extrapolate to the continuum and chiral limit in a global fit with form:

$$Y\left(a^{2}, \frac{m_{ll}^{2}}{f_{ll}^{2}}, \delta_{m_{s}^{sea}}\right) = Y\left(0, \frac{m_{\pi}^{2}}{f_{\pi}^{2}}, 0\right) \left[1 + \alpha_{i}a^{2} + \beta_{i}\frac{m_{ll}^{2}}{f_{ll}^{2}} + \gamma_{i}\delta_{m_{s}^{sea}}\right]$$

where we include a term linear strange sea-quark mass:

$$\delta_{m_s^{sea}} = \frac{(m_s^{sea} - m_s^{phys})}{m_s^{phys}}$$

Ratio Parameter Fits

Figure: Preliminary results for R_2 and R_3 in \overline{MS} at 3 GeV RI-SMOM^{γ,γ} intermediate scheme. Data points have been adjusted to the physical strange-mass and continuum using the fit form and parameters gained from the fit.

Ratio Parameter Fits (not corrected to continuum)

Figure: Preliminary results for R_2 and R_3 in \overline{MS} at 3 GeV RI-SMOM^(γ, γ) intermediate scheme.

Ratio Parameter Fits

Figure: Preliminary results for R_4 and R_5 in \overline{MS} at 3 GeV RI-SMOM^{γ,γ} intermediate scheme. Data points have been adjusted to the physical strange-mass and continuum.

Figure: Preliminary results for B_2 and B_3 in \overline{MS} at 3 GeV RI-SMOM^{γ,γ} intermediate scheme. Data points have been adjusted to the physical strange-mass and continuum.

Figure: Preliminary results for B_4 and B_5 in \overline{MS} at 3 GeV RI-SMOM^{γ,γ} intermediate scheme. Data points have been adjusted to the physical strange-mass and continuum.

Table of Results

		-	R_2	R_3	R_4	R_5
SMOM	(γ, γ)	-	-18.50(18)	5.529(64)	38.59(37)	10.9(10)
	(q, q)	-	-19.83(19)	5.416(71)	41.12(39)	10.427(96)
MS	(γ, γ)	-	-18.79(19)	5.795(68)	41.46(40)	10.720(99)
WI5	(q, q)	-	-19.38(19)	5.630(73)	42.58(40)	10.424(95)
		B_1	B_2	B_3	B_4	B_5
SMOM	(γ, γ)	0.5156(12)	0.5125(20)	0.7509(49)	0.9088(33)	0.7789(28)
SIVICIVI	(q, q)	0.5337(12)	0.5115(17)	0.6667(54)	0.9002(29)	0.6968(23)
$\overline{\mathrm{MS}}$	(γ, γ)	0.5177(12)	0.4699(18)	0.7089(46)	0.8820(32)	0.6954(23)
	(q, q)	0.5289(12)	0.4741(16)	0.6555(55)	0.8839(27)	0.6610(21)

Physical point continuum limit results - with stat error only

Values of $\chi^2/{\rm dof}$

		-	R_2	R_3	R_4	R_5
MOM	(γ, γ)	-	0.05	0.07	0.97	0.40
NON	(q, q)	-	0.01	0.15	0.73	0.38
me	(γ, γ)	-	0.09	0.14	0.96	0.40
1115	(q, q)	-	0.01	0.16	0.75	0.38
		B_1	B_2	B_3	B_4	B_5
MOM	(γ, γ)	1.86	1.36	2.37	0.52	0.92
NON	(q, q)	1.34	1.59	5.74	0.43	1.63
me	(γ, γ)	1.84	0.63	1.50	1.20	1.87
1115	(q, q)	1.32	1.43	6.08	0.57	2.17

= ▲□▶▲圖▶▲필▶▲필▶ 필필 - 의식은

18/24

Comparison with Previous Results

PT error $\approx 2\%$

Comparison with Previous Results

Consistency within errors with previous results.

	this work	RBC-UKQCD14 ⁴	RBC-UKQCD16 ⁵
$B_K^{(q,q)}(\overline{\mathrm{MS}}, 3\mathrm{GeV})$	0.5289(12)	0.5293(17)(106)	0.536(9)(6)(11)
$R_2^{(\gamma,\gamma)}(\overline{\mathrm{MS}}, 3\mathrm{GeV})$	-18.79(19)	-	-19.48(44)(32)(42)
$R_3^{(\gamma,\gamma)}(\overline{\mathrm{MS}},3\mathrm{GeV})$	5.795(68)	-	6.08(15)(18)(14)
$R_4^{(\gamma,\gamma)}(\overline{\mathrm{MS}}, 3\mathrm{GeV})$	41.5(40)	-	43.11(89)(201)(112)
$R_5^{(\gamma,\gamma)}(\overline{\mathrm{MS}}, 3\mathrm{GeV})$	10.720(99)	-	10.99(20)(82)(32)

Stat error improved significantly.

⁴Blum et al, 2014, arXiv:1411.7017

⁵Garron,Hudspith, Lytle, 2016, arXiv:1609.03334 < □ > < @ > < ≥ > < ≥ > ≥ = ∽ <

Tensions in previous results

<ロト < 団ト < 臣ト < 臣ト < 臣ト 三日 のへの 21/24 In Garron et al ⁶ it was proposed that source of tension come from choice of kinematics in renormalisation.

⁶Garron et al, RBC-UKQCD, 16 arXiv:1609.03334 □ → <♂ → < ≧ → < ≧ → ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒

Summary

- Two times smaller statistical error
- Third lattice spacing in fit
- Data directly at physical point for first time
- Systematic error will be dominated by perturbation theory
- Quantify truncation in perturbation theory by difference between schemes
- Consistent with previous RBC-UKQCD results with NE schemes
- Exceptional schemes remain in disagreement (pion pole model suspect)

Thanks to all members of RBC-UKQCD for their weekly discussions and comments.

Backup slides

Figure: Preliminary results for R_2 and R_3 in \overline{MS} at 3 GeV RI-SMOM^(γ, γ) intermediate scheme.

Figure: Preliminary results for R_4 and R_5 in \overline{MS} at 3 GeV RI-SMOM^(γ, γ) intermediate scheme.

Figure: Preliminary results for B_2 and B_3 in \overline{MS} at 3 GeV RI-SMOM^(γ, γ) intermediate scheme.

Figure: Preliminary results for B_4 and B_5 in \overline{MS} at 3 GeV RI-SMOM^(γ, γ) intermediate scheme.

SM Bag parameter

Figure: Preliminary results for B_K in \overline{MS} at 3 GeV RI-SMOM^(γ,γ) intermediate scheme.

Figure: Preliminary results for R_2 and R_3 in \overline{MS} at 3 GeV RI-SMOM^(\notin , \notin) intermediate scheme.

Figure: Preliminary results for R_4 and R_5 in \overline{MS} at 3 GeV RI-SMOM^{*g*,*g*} intermediate scheme.

Figure: Preliminary results for B_2 and B_3 in \overline{MS} at 3 GeV RI-SMOM^{*g*,*g*} intermediate scheme.

Figure: Preliminary results for B_4 and B_5 in \overline{MS} at 3 GeV RI-SMOM^{*g*,*g*} intermediate scheme.

