Test of factorization for the long-distance effects from charmonium in $B \to K l^+ l^-$

NAKAYAMA Katsumasa(Nagoya Univ.)

Shoji Hashimoto (KEK) for JLQCD Collaboration 2018/7/27@Lattice2018,East Lansing,MI,USA

Photo: Granada,, Spain, 2017

Motivation

(1): $B \to K l^+ l^-$ is a penguin-induced FCNC process.

(GIM and loop suppressed)

(2): Anomaly in experiments:

$$q^2 < m_{J/\psi}^2$$

[D. Du et al. (Fermilab, MILC) 1510.02349]

Question: Are the long distance contributions understood?

→We calculate the corresponding amplitude by lattice formulation.

Charmonium resonance contributions

We focus on the charmonium resonance contribution,

$$H_{\text{eff}} = \frac{G_F}{\sqrt{2}} \left(\sum_{i=1}^2 \left(V_{us}^* V_{ub} C_i O_i^u + V_{cs}^* V_{cb} C_i O_i^c \right) - V_{ts}^* V_{tb} \sum_{i=3}^{10} C_i O_i \right)$$

$$O_1^c = (\overline{s}_i \gamma_{\mu} P_{-} c_j) (\overline{c}_j \gamma_{\mu} P_{-} b_i)$$

$$O_2^c = (\overline{s}_i \gamma_{\mu} P_{-} c_i) (\overline{c}_j \gamma_{\mu} P_{-} b_j)$$

 \rightarrow O_1^c and O_2^c induce the long-distance contribution, which is often estimated by the factorization approximation. How good is that?

$leftharpoonup K o \pi$ decay amplitudes

 \diamond We'd like to calculate the B decay amplitudes on the lattice. Formulation is analogous to the $K \to \pi l l$ decay amplitudes

[N.H. Christ et al. (RBC, UKQCD) 1507.03094]

$$\mathcal{A}_{\mu} (q^{2}) = \int d^{4}x \langle \pi(\mathbf{p}) | T [J_{\mu}(0) H_{\text{eff}}(x)] | K(\mathbf{k}) \rangle$$

$$\mathcal{A}_{\mu} (q^{2}) = \int d^{4}x \langle K(\mathbf{k}) | T [J_{\mu}(0) H_{\text{eff}}(x)] | B(\mathbf{p}) \rangle$$

The amplitude is calculable from the integration of 4pt-func.

$$I_{\mu}\left(T_{a}, T_{b}, \mathbf{p}, \mathbf{k}\right) \simeq \int_{t_{J} - T_{a}}^{t_{J} + T_{b}} dt_{H}$$

$$(0 \ll t_{J} - T_{a} \leq t_{J} + T_{b} \ll t_{K})$$

lacktriangledown $B o K l^+ l^-$ decay amplitudes

Charm loop would produce contributions like

$$\int_0^\infty dt e^{\omega t} e^{-E_{J/\psi}t} = \frac{1}{\omega - E_{J/\psi}} \qquad \int_{-\infty}^0 dt e^{\omega t} e^{E_{J/\psi}t} = \frac{1}{\omega + E_{J/\psi}}$$

$$\int_{-\infty}^{0} dt e^{\omega t} e^{E_{J/\psi}t} = \frac{1}{\omega + E_{J/\psi}}$$

 \diamondsuit If we focus on $\omega = \sqrt{m_{J/\psi}^2 - \mathbf{q}^2} \sim E_{J/\psi}$, $t_H < t_J$ part is dominant

Divergence of the amplitude?

$$\diamondsuit K \to \pi l^+ l^-$$
case

[N.H. Christ et al. (RBC, UKQCD) 1507.03094]

$$I_{\mu} = +(t_{J} < t_{H})$$

$$t_{H} \quad t_{J}$$

$$I_{\mu}\left(T_{a}, T_{b}, \mathbf{p}, \mathbf{k}\right) = -\int_{0}^{\infty} dE \frac{\rho(E)}{2E} \frac{\langle \pi(\mathbf{k}) | J_{\mu}(0) | E, \mathbf{p} \rangle \langle E, \mathbf{p} | H_{\text{eff}}(0) | K(\mathbf{p}) \rangle}{E_{K}(\mathbf{p}) - E} \left(1 - e^{[E_{K}(\mathbf{p}) - E]T_{a}}\right)$$

$$+(t_{J} < t_{H})$$

- \diamond Some intermediate states have E lower than E_K
- ightharpoonup Since $T_a
 ightharpoonup \infty$, they must be subtracted.

(e.g.
$$K \to \pi, \pi\pi, \pi\pi\pi$$
)

Divergence of the amplitude?

$$\diamond$$
 $B \to K l^+ l^-$ case

$$I_{\mu} = +(t_{J} < t_{H})$$

$$t_{H} \quad t_{J}$$

$$I_{\mu}\left(T_{a}, T_{b}, \mathbf{p}, \mathbf{k}\right) = -\int_{0}^{\infty} dE \frac{\rho_{S}(E)}{2E} \frac{\langle K(\mathbf{k}) | J_{\mu}(0) | E, \mathbf{p} \rangle \langle E, \mathbf{p} | H_{\text{eff}}(0) | B(\mathbf{p}) \rangle}{E_{B}(\mathbf{p}) - E} \left(1 - e^{[E_{B}(\mathbf{p}) - E]T_{a}}\right)$$

$$+(t_{J} < t_{H})$$

We restrict ourselves in the setup of

$$m_B < m_{J/\psi} + m_K$$

→ No divergence.

• Amplitude of $B \to K l^+ l^-$.

 \diamond From the integration of the 4-point correlators, we can extract the amplitude after taking $T_{a,b} \to \infty$ limit.

$$I_{\mu}\left(T_{a}, T_{b}, \mathbf{p}, \mathbf{k}\right) = -\int_{0}^{\infty} dE \frac{\rho_{S}(E)}{2E} \frac{\langle K(\mathbf{k}) | J_{\mu}(0) | E, \mathbf{p} \rangle \langle E, \mathbf{p} | H_{\text{eff}}(0) | B(\mathbf{p}) \rangle}{E_{B}(\mathbf{p}) - E} \left(1 - e^{[E_{B}(\mathbf{p}) - E]T_{a}}\right)$$

$$+(t_{J} < t_{H})$$

$$\mathcal{A}_{\mu} (q^{2}) = \int d^{4}x \langle K(\mathbf{k}) | T [J_{\mu}(0) H_{\text{eff}}(x)] | B(\mathbf{p}) \rangle$$

$$A_{\mu}(q^2) = -i \lim_{T_{a,b} \to \infty} I_{\mu}(T_a, T_b, \mathbf{k}, \mathbf{p})$$

Factorization method for $B \rightarrow K l^+ l^-$ decay

Factorization

Assume that long-range gluon exchange can be ignored

$$\langle P_K | J_{\nu}^{\overline{c}c}(\overline{c}_i \gamma_{\mu} P_{-} c_i)(\overline{s}_j \gamma_{\mu} P_{-} b_j) | P_B \rangle = \frac{1}{(\text{Vol.})} \langle 0 | J_{\nu}^{\overline{c}c} J_{\mu}^{\overline{c}c} | 0 \rangle \langle P_K | V_{\mu} | P_B \rangle$$

→ We test this assumption by the lattice calculation.

Factorization

 \diamond Factorizable operator O_F and non-factorizable operator O_{NF}

 $O_{1}^{c} = (\overline{s}_{i}\gamma_{\mu}P_{-}c_{j})(\overline{c}_{j}\gamma_{\mu}P_{-}b_{i}) \longrightarrow O_{F}^{(1)} = (\overline{c}_{i}\gamma_{\mu}P_{-}c_{i})(\overline{s}_{j}\gamma_{\mu}P_{-}b_{j}) \\ O_{2}^{c} = (\overline{s}_{i}\gamma_{\mu}P_{-}c_{i})(\overline{c}_{j}\gamma_{\mu}P_{-}b_{j}) \longrightarrow O_{NF}^{(8)} = (\overline{c}_{i}[T^{a}]_{ij}\gamma_{\mu}P_{-}c_{j})(\overline{s}_{k}[T^{a}]_{kl}\gamma_{\mu}P_{-}b_{l})$

$$O_1^c = O_F^{(1)}$$
 $O_2^c = \frac{1}{3}O_F^{(1)} + 2O_{NF}^{(8)}$

- \diamond Assume non-factrizable operator $O_{NF}^{(8)}$ could be ignored
 - \rightarrow We test this assumption $O_2^c = \frac{1}{3}O_1^c$.

$$K o \pi\pi$$
 case, Lattice. $O_2^l \simeq -0.7 O_1^l$

[P.A. Boyle et al. (RBC, UKQCD) 1212.1474]

Current status

β	a^{-1}	L^3	$\times T$	$\Gamma(\times L_s)$	meas	am_{uds}	am_c	am_b	am_{π}	aE_K	$am_{J/\psi}$	am_B
4.17	2.453(4)	32^{3}	6×6	$4(\times 12)$	100	0.04	0.44037	0.68808	0.2904(5)	0.3513(16)	1.2809(6)	1.063(11)
4.35	3.610(9)	48	3×9	96(×8)	90	0.025	0.27287	0.66619	0.1986(3)	0.2378(9)	0.8701(3)	0.9543(19)
	$\overline{\text{GeV}}$								$\simeq 714 \text{ MeV}$	$\simeq 855~{ m MeV}$	≥ 3.14 GeV	$\simeq 3.44 \text{ GeV}$

Mobius domain-wall fermion with 2+1 flavor.

- up and down mass same as strange.
- "bottom" mass: $m_b = \{(1.25^2)m_c, (1.25^4)m_c\}$
- \bullet Finite momentum in the final state $\, {\bf k} = \frac{2\pi}{L}(1,0,0) \,$

4-point functions

$$\Gamma_{\mu}^{(4)}\left(t_{H},t_{J},\mathbf{p},\mathbf{k}\right) = \int d^{3}\mathbf{x}d^{3}\mathbf{y}e^{-i\mathbf{q}\cdot\mathbf{y}} \left\langle \phi_{K}\left(t_{K},\mathbf{k}\right)\mathrm{T}\left[J_{\mu}\left(t_{J},\mathbf{y}\right)H_{\mathrm{eff}}\left(t_{H},\mathbf{x}\right)\right]\phi_{B}^{\dagger}(0,\mathbf{p})\right\rangle$$

4-point functions

4-point functions

TO DO LIST

We have to...

(1):determine the lattice renormalization constants.

(2):Input more realistic momentum.

$$E_B(0) = E_{J/\psi}(\mathbf{k}) + E_K(\mathbf{k}) \longrightarrow \mathbf{k} \ge \frac{2\pi}{L}(2, 2, 2)$$

(3):Input or extrapolate to physical quark masses.

(4):complete integration and taking limit to extract amplitude.

Summary

- \diamondsuit We study the charmonium contribution to $B \to K l^+ l^-$ by the lattice calculation.
- $\diamond B \to K l^+ l^-$ is calculable analogously to $K \to \pi l^+ l^-$ for lighter bottom quark masses.
- As a first step, we study the accuracy of the factorization approximation.

Sizable non-factorizable contribution is observed in the long-distance region.

• 4 point functions a = 2.45 GeV

• 4 point functions a = 2.45 GeV

