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◉ Motivation
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(1):                     is a penguin-induced FCNC process.
(GIM and loop suppressed)

(2): Anomaly in experiments:

Question: Are the long distance
contributions understood? 

→We calculate the corresponding
amplitude by lattice formulation.
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FIG. 6. Standard-Model di↵erential branching fraction (gray band) for B ! Kµ+µ� decay (left)
and B ! K⌧+⌧� (right), where B denotes the isospin average, using the Fermilab/MILC form
factors [62]. Experimental results for B ! Kµ+µ� are from Refs. [45, 146–148]. The BaBar, Belle,
and CDF experiments report isospin-averaged measurements.

logarithmically enhanced QED corrections.
Figure 6 plots the isospin-averaged Standard-Model di↵erential branching fractions for

B ! Kµ+µ� and B ! K⌧+⌧�. For B ! Kµ+µ� decay, we compare our results with
the latest measurements by BaBar [148], Belle [146], CDF [147], and LHCb [45]. Tables V
and VI give the partially integrated branching fractions for the charged (B+) and neutral
(B0) meson decays, respectively, for the same q2 bins used by LHCb in Ref. [45]. In the
regions q2 . 1 GeV2 and 6 GeV2 . q2 . 14 GeV2, uū and cc̄ resonances dominate the
rate. To estimate the total branching ratio, we simply disregard them and interpolate
linearly in q2 between the QCD-factorization result at q2 ⇡ 8.5 GeV2 and the OPE result at
q2 ⇡ 13 GeV2. Although this treatment does not yield the full branching ratio, it enables a
comparison with the quoted experimental totals, which are obtained from a similar treatment
of these regions. Away from the charmonium resonances, the Standard-Model calculation
is under good theoretical control, and the partially integrated branching ratios in the wide
high-q2 and low-q2 bins are our main results:

�B(B+ ! K+µ+µ�)SM ⇥ 109 =

⇢
174.7(9.5)(29.1)(3.2)(2.2), 1.1 GeV2  q2  6 GeV2,
106.8(5.8)(5.2)(1.7)(3.1), 15 GeV2  q2  22 GeV2,

(4.3)

�B(B0 ! K0µ+µ�)SM ⇥ 109 =

⇢
160.8(8.8)(26.6)(3.0)(1.9), 1.1 GeV2  q2  6 GeV2,
98.5(5.4)(4.8)(1.6)(2.8), 15 GeV2  q2  22 GeV2,

(4.4)

where the errors are from the CKM elements, form factors, variations of the high and low
matching scales, and the quadrature sum of all other contributions, respectively. LHCb’s
measurements for the same wide bins are [45]

�B(B+ ! K+µ+µ�)exp ⇥ 109 GeV2 =

⇢
118.6(3.4)(5.9) 1.1 GeV2  q2  6 GeV2,
84.7(2.8)(4.2) 15 GeV2  q2  22 GeV2,

(4.5)

21

[D. Du et al. (Fermilab, MILC) 1510.02349]

q2 < m2
J/ 
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◇ We focus on the charmonium resonance contribution,
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→      and      induce the long-distance contribution,

◉ Charmonium resonance contributions 
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which is often estimated by the factorization approximation. 
How good is that?



◉ .          decay amplitudes
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◇ We’d like to calculate the B decay amplitudes on the lattice.
Formulation is analogous to the                decay amplitudes.

[N.H. Christ et al. (RBC, UKQCD) 1507.03094]

◇ The amplitude is calculable from the integration of 4pt-func.

tJtHtB tK
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◇ If we focus on                              ,              part is dominant.
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◉ .                 decay amplitudesB ! Kl+l�



◇                    case

◉ Divergence of the amplitude?
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[N.H. Christ et al. (RBC, UKQCD) 1507.03094]K ! ⇡l+l�

◇ Some intermediate states have       lower thanE
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◉ Divergence of the amplitude?
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→ No divergence.

◇ We restrict ourselves in the setup of

◇                     case
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◉ Amplitude of                   .
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◇ From the integration of the 4-point correlators, we can 
extract the amplitude after taking                 limit.

Aµ(q
2) = �i lim

Ta,b!1
Iµ(Ta, Tb,k,p)
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Factorization method for                  decayB ! Kl+l�
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◇ Assume that long-range gluon exchange can be ignored

◉ Factorization 

h iihh i /

→ We test this assumption by the lattice calculation.
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◇ Factorizable operator      and non-factorizable operator 

◉ Factorization 
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1K ! ⇡⇡ case, Lattice.
[P.A. Boyle et al. (RBC, UKQCD) 1212.1474]
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Preliminary result for the test of factorization  
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◉ Current status 

◆ up and down mass same as strange.

◆ “bottom” mass:

◆ Finite momentum in the final state 

mb = {(1.252)mc, (1.25
4)mc}

' 714 MeV ' 855 MeV ' 3.14 GeV ' 3.44 GeV

k =
2⇡

L
(1, 0, 0)

β a−1 L3 × T (×Ls) meas amuds amc amb amπ aEK amJ/ψ amB

4.17 2.453(4) 323 × 64(×12) 100 0.04 0.44037 0.68808 0.2904(5) 0.3513(16) 1.2809(6) 1.063(11)

4.35 3.610(9) 483 × 96(×8) 90 0.025 0.27287 0.66619 0.1986(3) 0.2378(9) 0.8701(3) 0.9543(19)

TABLE I. Simulation parameters and meson spectrals.

The O(1)
F is simply same form with the Oc

1 by Firts identity,

Oc
1 = O(1)

F (II.5)

And the color connected operator Oc
2 becomes

Oc
2 =

1

N
O(1)

F + 2O(8)
NF . (II.6)

To focus on factrizable part O(1)
F , it suppressed by color factor N .

We consider the factorization scheme of operator O(1)
F .

⟨PK |J cc
ν (ciγµP−ci)(sjγµP−bj)|PB⟩ =

(Const.)

(Vol.)
⟨0|J cc

ν (ciγµP−ci)|0⟩⟨PK |(sjγµP−bj)|PB⟩

=
(Const.)

(Vol.)
⟨0|J cc

ν J cc
µ |0⟩⟨PK |Vµ|PB⟩

where we introduce the pseudo scalor source operator PK = uγ5s and PB = bγ5u, vector

source operator J cc
ν = cγνc, and vector operator Vµ = sjγµP−bj.

Note that this equation is valid after the sum of index µ. As an example, we set ν = 0.

Then the µ = 0 and 1 has nonzero value since the charmonum correlator have to be zero if

µ = 2 or 3.

We also consider the ratio of 4pt and factrized one.

R(O1)
ν=1 =

(Vol.)

(Const.)

⟨PKJ cc
ν=1|Oc

1|PB⟩
⟨0|J cc

ν=1J
cc
µ |0⟩⟨PK |Vµ|PB⟩

(II.7)

III. LATTICE SIMULATION

A. 2pt

Starting from 2-point functions.

3

Mobius domain-wall fermion with 2+1 flavor.

GeV
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◉ 4-point functions 
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◉ 4-point functions 

Factorization
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◉ 4-point functions 
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◉ TO DO LIST
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We have to…

(1):determine the lattice renormalization constants.

(2):Input more realistic momentum.

(3):Input or extrapolate to physical quark masses.

(4):complete integration and taking limit to extract 
amplitude. 

EB(0) = EJ/ (k) + EK(k) k � 2⇡

L
(2, 2, 2)



◉ Summary
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◇ We study the charmonium contribution to                         
    by the lattice calculation. 

◇                    is calculable analogously to                    for 
lighter bottom quark masses. 

◇ As a first step, we study the accuracy of the factorization 
approximation.

◇ Sizable non-factorizable contribution is observed in the 
long-distance region.

B ! Kl+l� K ! ⇡l+l�

B ! Kl+l�
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◉ 4 point functions 

Factorization

a = 2.45 GeV
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◉ 4 point functions 

Factorization

Oc
2/O

c
1

a = 2.45 GeV


