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Main ideas

In most lattice simulations, the variables of integration are
compact and character expansions (such as Fourier series) can
be used to rewrite the partition function and average observables
as discrete sums of contracted tensors.

Example: the O(2) model eβ cos(θi−θj ) =
+∞∑

nij=−∞
einij (θi−θj )Inij (β)

This reformulations have been used for RG blocking but they are
also suitable for quantum computations/simulations when
combined with truncations.
We discuss FAQ about tensorial formulations:

effects of truncation on global symmetries
boundary conditions
Grassmann tensors
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Tensor Renormalization Group (TRG)

TRG: first implementation of Wilson program for lattice models
without uncontrollable approximations
Leads to universal fixed point equations but truncation methods
need to be optimized
Models we considered: Ising model, O(2), O(3), principal chiral
models, gauge models (Ising, U(1) and SU(2)))
Quantum simulators, measurements of entanglement entropy,
central charge ..
Our group: PRB 87 064422 (2013), PRD 88 056005 (2013), PRD
89 016008 (2014), PRA90 063603 (2014), PRD 92 076003
(2015), PRE 93 012138 (2016) , PRA 96 023603 (2017), PRD 96
034514 (2017), arXiv:1803.11166, arXiv:1807.09186.
Basic references for tensor methods for Lagrangian models: Levin
and Nave, PRL 99 120601 (2007), Z.C. Gu et al. PRB 79 085118
(2009), Z. Y. Xie et al., PRB 86 045139 (2012)
Schwinger model/fermions/CP(N): Yuya Shimizu, Yoshinobu
Kuramashi; Ryo Sakai, Shinji Takeda; Hikaru Kawauchi.
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TRG blocking: it’s simple and exact!

2D Ising model: for each link we use the character expansion

exp(βσ1σ2) = cosh(β)(1 +
√

tanh(β)σ1
√

tanh(β)σ2) =

cosh(β)
∑

n12=0,1

(
√

tanh(β)σ1
√

tanh(β)σ2)n12 .

Regroup the four terms involving a given spin σi and sum over its two
values ±1. The results can be expressed in terms of a tensor: T (i)

xx ′yy ′
which can be visualized as a cross attached to the site i with the four
legs covering half of the four links attached to i . The horizontal indices
x , x ′ and vertical indices y , y ′ take the values 0 and 1 as the index n12.

T (i)
xx ′yy ′ = fx fx ′ fy fy ′δ

(
mod[x + x ′ + y + y ′,2]

)
,

where f0 = 1 and f1 =
√

tanh(β). The delta symbol is 1 if
x + x ′ + y + y ′ is zero modulo 2 and zero otherwise.
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TRG blocking (graphically)

Exact form of the partition function:

Z = 2V (cosh(β))2V Tr
∏

i

T (i)
xx ′yy ′

Tr mean contractions (sums over 0 and 1) over the links.
Reproduces the closed paths (“worms") of the HT expansion.
TRG blocking separates the degrees of freedom inside the block which
are integrated over, from those kept to communicate with the
neighboring blocks. Graphically :
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TRG Blocking (formulas)

Blocking defines a new rank-4 tensor T ′XX ′YY ′ where each index now
takes four values.

T ′X(x1,x2)X ′(x ′1,x
′
2)Y (y1,y2)Y ′(y ′1,y

′
2)

=∑
xU ,xD ,xR ,xL

Tx1xUy1yLTxUx ′1y2yR
TxDx ′2yRy ′2

Tx2xDyLy ′1
,

where X (x2, x2) is a notation for the product states e. g. ,
X (0,0) = 1, X (1,1) = 2, X (1,0) = 3, X (0,1) = 4. The partition
function can be written exactly as

Z = 2V (cosh(β))2V Tr
∏
2i

T ′(2i)
XX ′YY ′ ,

where 2i denotes the sites of the coarser lattice with twice the lattice
spacing of the original lattice. Using a truncation in the number of
“states" carried by the indices and rescaling all the tensors in such a
way that one of them stays equal to 1, we can write a fixed point
equation.
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O(2) model

Z =

∫ ∏
i

dθi

2π
e
β

∑
<ij>

cos(θi−θj )

.

eβ cos(θi−θj ) =
+∞∑

nij=−∞
einij (θi−θj )Inij (β) ,

where the In are the modified Bessel functions of the first kind. In two
dimensions, we obtain the factorizable expression:

T i
nix ,nix′ ,niy ,niy′

=
√

Inix (β)
√

Iniy (β)
√

Inix′ (β)
√

Iniy′ (β)

δnix+niy ,nix′+niy′ .

The partition function and the blocking of the tensor are similar to the
Ising model but the sums run over all integers.
The In(β) decay rapidly for large n and fixed β (namely like 1/n!).
δnix+niy ,nix′+niy′ encodes the O(2) symmetry.
The generalization to higher dimensions is straightforward.
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TRG approach of the transfer matrix

The partition function can be expressed in terms of a transfer matrix:

Z = TrTLt .

The matrix elements of T can be expressed as a product of tensors
associated with the sites of a time slice (fixed t) and traced over the
space indices (PhysRevA.90.063603)

T(n1,n2,...nLx )(n
′
1,n
′
2...n

′
Lx
) =

∑
ñ1ñ2...ñLx

T (1,t)
ñLx ñ1n1n′1

T (2,t)
ñ1ñ2n2n′2...

. . .T (Lx ,t)
ñLx−1

ñLx nLx n′Lx

with (for the O(2) model with chemical potential)

T (x ,t)
ñx−1ñx nx n′x

=
√

Inx (βτ )In′x (βτ )Iñx−1
(βs)Iñx (βs)e(µ(nx+n′x ))δñx−1+nx ,ñx+n′x

The Kronecker delta function reflects the existence of a conserved
current, a good quantum number (“particle number" ).
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Transfer matrix for O(2) with chemical potential

Figure: Graphical representation of the transfer matrix (left) and its
successive coarse graining (right). See PRD 88 056005 and PRA 90, 063603
for explicit formulas.
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Entanglement entropy SE (PRE 93, 012138 (2016))

We consider the subdivision of AB into A and B (two halves in our
calculation) as a subdivision of the spatial indices ρ̂A ≡ TrB ρ̂AB; We
use blocking methods until A and B are each reduced to a single site.
In 1+1 dimensions:

The n -th order Rényi entanglement entropy is defined as:

Sn(A) ≡ 1
1− n

ln(Tr ((ρ̂A)n)) .

Quantum simulations with cold atoms: PRA 96 023603 (2017),
Calabrese-Cardy scaling: PRD 96 034514 (2017)
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Motivations for quantum simulations in lattice gauge
theory and high energy physics

Lattice QCD has been very successful at establishing that QCD is
the theory of strong interactions, however some aspects remain
inaccessible to classical computing.
Some finite density calculations have a sign problem
Real time evolution requires detailed information not available
from conventional MC simulations at Euclidean time.
Ambitious goal: collider jet physics from first principles
Quantum simulations with optical lattices were successful in
Condensed Matter (Bose-Hubbard), but so far no actual
implementations for lattice gauge theory
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Recent results (see J. Unmuth-Yockey talk + arxiv
1803.11166 and 1807.09186 )

We have reformulated the lattice Abelian Higgs model (scalar
QED) in 1 space + 1 time dimension using the Tensor
Renormalization Group method.
The reformulation is gauge invariant and connects smoothly the
classical Lagrangian formulation used by lattice gauge theorists
and the quantum Hamiltonian method used in condensed matter.
Calculations of the Polyakov loop show a remarkable data
collapse that survives the time continuum limit. This can be tested
with small volumes.
We propose to use Bose-Hubbard (BH) Hamiltonians on a ladder
as quantum simulators for the Abelian Higgs model which are
being investigated by Johannes Zeiher in Immanuel Bloch’s lab
(MPQ, Garching).
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Universal functions: the Polyakov loop

arXiv:1803.11166
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Figure: Data collapse of Ns∆E defined from the insertion of the Polyakov
loop, as a function of N2

s U, or (Nsg)2 (collapse of 24 datasets). Numerical
work by Judah Unmuth-Yockey and Jin Zhang.
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A first quantum calculator for the abelian Higgs model?

Figure: Left: Johannes Zeiher, a recent graduate from Immanuel Bloch’s
group can design ladder shaped optical lattices with nearest neighbor
interactions. Right: an optical lattice experiment of Bloch’s group.
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Optical lattice implementation with a ladder

H̄ =
Ũg

2

∑
i

(
L̄z
(i)

)2
+

Ỹ
2

∑
i

(L̄z
(i) − L̄z

(i+1))
2 − X̃

∑
i

L̄x
(i)

Figure: Ladder with one atom per rung: tunneling along the vertical direction,
no tunneling in the the horizontal direction but short range attractive
interactions. A parabolic potential is applied in the spin (vertical) direction.
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Quantum Ising model (2 legs): Looking at the vacuum
wavefunction: σz meas.
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FAQ: Do truncation break global symmetries? No

For the O(2) model, the action and the measure of integration are
invariant under the global symmetry θx → θx + ∆, this implies

〈f (θx1 , . . . , θxN )〉 = 〈f (θx1 + ∆, . . . , θxN + ∆)〉

f is 2π-periodic and can be expressed in terms of Fourier modes

〈exp(i(n1θx1+. . . nNθxN ))〉 = exp((n1+. . . nN)∆)〈exp(i(n1θx1+. . . nNθxN ))〉

If
∑N

n=1 ni 6= 0 then 〈exp(i(n1θx1 + · · ·+ nNθxN ))〉 = 0

This selection rule is due to the quantum number selection rules at the
sites and is independent of the particular values taken by the tensors.
So if we set some of the tensor elements to zero as we do in a
truncation, this does not affect the selection rule.
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Boundary conditions

Periodic boundary conditions (PBC) allow us to keep a discrete
translational invariance. As a consequence the tensors
themselves are translation invariant and assembled in the same
way at every site, link etc.
Open boundary conditions (OBC) can be implemented by
introducing new tensors that can be placed at the boundary. The
only difference is that there are missing links at sites or missing
plaquettes a links. In all the examples we know, it is possible
normalize the tensors in such a way that the missing elements can
be taken into account by setting the corresponding indices to zero.
It is also possible to define new boundary conditions that only
make sense in the reformulation, for instance fixing some of the
indices corresponding to missing elements to values different to
zero, or summing over these.
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PBC versus OBC with tensors (2D Ising)

Figure: Assembling the translation invariant tensor with periodic BC (left), or
using new tensors at the boundary for open BC (right).
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Grassmann formulation (in progress)

The local tensor can be expressed as a function of four Grassmann
variables attached to each site: ηL, ηA, ηB ηR. L means Left and R
Right. LABR ordering present at each site when products are taken.

T (η) ≡
∑

nLnRnAnB=0,1

TnLnRnAnBη
nL
L η

nA
A ηnB

B ηnR
R

(η) is a short notation for (ηL, ηA, ηB , ηR)
Because of the factorization properties (Z2 is abelian):

T1111 = T1100 × T0011 = T0101 × T1010 = T1001 × T0110

the tensor function exponentiates

T (η) = eT2(η)

T2(η) = tsηLηR + ttηAηB +
√

tstt (ηLηA + ηLηB + ηAηR + ηBηR)
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Grassmann form of the transfer matrix

The conventional transfer matrix element are all positive and should be
read with a specific ordering of the Grassmann variables: first, left to
right according to position 1, 2, . . . ,Ns and then A,B.

T({η}) ≡
∑
{n}

T(nA1,...,nANs ,nB1,...,nBNs )
ηnA1

A1 η
nB1
B1 . . . η

nANs
ANs

η
nBNs
BNs

where {n} is a short notation for the summations
{nA1, . . . ,nANs ,nB1, . . . ,nBNs = 0,1}
This ordering is achieved by inserting e+ηR1ηL2 between T (η1) and
T (η2) and integrating with

∫
dηL2dηR1 etc. We use periodic boundary

conditions in the σ formulation and the summation between the last
site and the first site requires e−ηRNsηL1 (antiperiodic in the Grassmann
formulation).
This Gaussian integration can be performed exactly, can we reproduce
Kaufman result (eigenvalues of the transfer matrix at finite volume)?

Yannick Meurice (U. of Iowa) Tensor toolkit MSU, Lattice 2018



Conclusions

We have proposed a gauge-invariant approach for the quantum
simulation of the abelian Higgs model.
The tensor renormalization group approach provides a discrete
formulation in the limit λ→∞ (no Higgs mode) suitable for
quantum computing
Calculations of the Polyakov loop at finite Nx and small gauge
coupling show a universal behavior (collapse related to the KT
transition of the limiting O(2) model)
A ladder of cold atoms with Ns rungs, one atom per rung, and
2s + 1 long sides seems to be the most promising realization
Proof of principle: data collapse for the quantum Ising model.
Thanks for listening!
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The Hamiltonian (time continuum limit)

For 1 << βpl << κτ , we obtain the time continuum limit.
For practical implementation, we need a truncation of the
plaquette quantum number (“finite spin")
We use the notation L̄x

(i) to denote a matrix with equal matrix
elements on the first off-diagonal (like the first generator of the
rotation algebra in the spin-1 representation)
Parameters: Ỹ ≡ (βpl/(2κτ ))Ũg and X̃ ≡ (βplκs

√
2)Ũg which are

the (small) energy scales.
The final form of the Hamiltonian H̄ is

H̄ =
Ũg

2

∑
i

(
L̄z
(i)

)2
+

Ỹ
2

∑
i

(L̄z
(i) − L̄z

(i+1))
2 − X̃

∑
i

L̄x
(i) .
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Gaussian integration

T({η}) =

∫
dηL1dηRNsdηL2dηR1T (η1)e+ηR1ηL2dη3LdηR2T (η2)e+ηR2ηL3 . . .

. . . dηNs−1LdηRNsT (ηNs−1)e+ηRNs−1ηLNs T (ηNs )e−ηRNsηL1

T({η}) =

∫
[DηL,R]e[ηR1ηL2+ηR2ηL3+···+ηRNs−1ηLNs−ηRNsηL1]

Ns∏
x=1

T (ηx )

[DηL,R] ≡ dηL1dηRNs . . . dη3LdηR2dηL2dηR1

T({η}) =

∫
[DηL,R]e[T2(η1)+ηR1ηL2+T2(η2)+ηR2ηL3+···+ηRNs−1ηLNs+T2(ηNs )−ηRNsηL1]
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