Nucleon form factors from Nf=2+1+1 twisted mass fermions at the physical point

Martha Constantinou

Temple University

in collaboration with ETM Collaboration:

- ★ C. Alexandrou, University of Cyprus & The Cyprus Institute
- ★ S. Bacchio, University of Cyprus
- * K. Hadjiyiannakou, The Cyprus Institute
- * K. Jansen, DESY, Zeuthen
- ★ G. Koutsou, The Cyprus Institute
- * A. Vaquero, University of Utah

Lattice Conference 2018
July 27, 2018

OUTLINE OF TALK

- 1. Introduction
- 2. Lattice Evaluation
- 3. E/M form factors (connected & disconnected)
- 4. Axial form factors (connected & disconnected)
- 5. Summary Future prospects

Introduction

FFs have been studied for decades as a tool to understand nucleon structure

- Nucleon electric & magnetic radii, magnetic moment extracted from Electromagnetic FFs
- \bigstar Intrinsic quark spin obtained from g_A ($G_A(Q^2=0)$)
- Axial FFs relevant to experiments searching neutrino oscillations

0.82 0.84 0.86 0.88 0.90 RMS charge radius [fm] [E. J. Downie, EPJ Conf. 113 (2016) 05021]

Introduction

FFs have been studied for decades as a tool to understand nucleon structure

- Nucleon electric & magnetic radii, magnetic moment extracted from Electromagnetic FFs
- Intrinsic quark spin obtained from g_A ($G_A(Q^2=0)$)
- Axial FFs relevant to experiments searching neutrino oscillations

Information from experiments not without ambiguities

- Discrepancy of $\langle r_n^2 \rangle$ between electron scattering and muonic hydrogen Lamb shifts
- Large uncertainties in cross section of quasielastic neutrino-nucleon scattering
 - not well-constrained Axial FFs
- Strange E/M FFs are compatible with zero (HAPPEX collaboration, A4 exper., SAMPLE exper.)

[E. J. Downie, EPJ Conf. 113 (2016) 050211

Introduction

FFs have been studied for decades as a tool to understand nucleon structure

- Nucleon electric & magnetic radii, magnetic moment extracted from Electromagnetic FFs
- Intrinsic quark spin obtained from g_A ($G_A(Q^2=0)$)
- Axial FFs relevant to experiments searching neutrino oscillations

Information from experiments not without ambiguities

- Discrepancy of $\langle r_n^2 \rangle$ between electron scattering and muonic hydrogen Lamb shifts
- Large uncertainties in cross section of quasielastic neutrino-nucleon scattering
 - not well-constrained Axial FFs
- Strange E/M FFs are compatible with zero (HAPPEX collaboration, A4 exper., SAMPLE exper.)

Sick(2003)

[E. J. Downie, EPJ Conf. 113 (2016) 050211

Lattice QCD ideal ab initio formulation to study nucleon form factors

OUTLINE OF TALK

- 1. Introduction
- 2. Lattice Evaluation
- 3. E/M form factors
- 4. Axial form factors
- 5. Summary Future prospects

★ Calculation of 2pt- and 3pt-functions

$$G^{2pt}:\langle N(p',s')|N(p,s)\rangle$$

$$G_{\mathcal{O}}^{3pt}: \langle N(p',s')|\mathcal{O}|N(p,s)\rangle$$

★ Calculation of 2pt- and 3pt-functions

$$G^{2pt}: \langle N(p',s')|N(p,s)\rangle \qquad \qquad G^{3pt}_{\mathcal{O}}: \langle N(p',s')|\mathcal{O}|N(p,s)\rangle$$

★ current insertion O (this work)

ultra-local: scalar, vector, axial, tensor, 1-Deriv: vector, axial, tensor

Calculation of 2pt- and 3pt-functions

$$G^{2pt}: \langle N(p',s')|N(p,s)\rangle \qquad \qquad G^{3pt}_{\mathcal{O}}: \langle N(p',s')|\mathcal{O}|N(p,s)\rangle$$

- ★ current insertion O (this work)

 ultra-local: scalar, vector, axial, tensor, 1-Deriv: vector, axial, tensor
- ★ Construction of optimized ratio

$$R_{\mathcal{O}}(\Gamma, \vec{q}, t) = \frac{G_{\mathcal{O}}(\Gamma, \vec{q}, t)}{G(\vec{0}, t_f)} \times \sqrt{\frac{G(-\vec{q}, t_f - t)G(\vec{0}, t)G(\vec{0}, t_f)}{G(\vec{0}, t_f - t)G(-\vec{q}, t)G(-\vec{q}, t_f)}}$$

Plateau Method: $R_{\mathcal{O}}(\Gamma, \vec{q}, t) \stackrel{t}{\underset{t-t \to \infty}{\longrightarrow}} \Pi_{\mathcal{O}}(\Gamma, \vec{q})$

2-state fits: include first excited state

★ Renormalization:

For most quantities multiplicative: $\Pi^R(\Gamma, \vec{q}) = Z_{\mathcal{O}} \Pi(\Gamma, \vec{q})$

- non-singlet: connected
- singlet: both connected and disconnected

★ Renormalization:

For most quantities multiplicative: $\Pi^R(\Gamma, \vec{q}) = Z_{\mathcal{O}} \Pi(\Gamma, \vec{q})$

- non-singlet: connected
- singlet: both connected and disconnected

* Extraction of form factors

Electromagnetic:

$$\langle N(p',s')|\mathcal{V}_{\mu}^q|N(p,s)\rangle \propto \bar{u}_N(p',s')\left(\gamma_{\mu}F_1^q(Q^2) + \frac{i\sigma_{\mu\nu}Q^{\nu}}{2m_N}F_2^q(Q^2)\right)u_N(p,s)$$

Axial:

$$\langle N(p',s')|\mathcal{A}_{\mu}^{q}|N(p,s)\rangle \propto \bar{u}_{N}(p',s')\left(\gamma_{\mu}\gamma_{5}G_{A}^{q}(Q^{2})+\frac{\gamma_{5}Q_{\mu}}{2m_{N}}G_{p}^{q}(Q^{2})\right)u_{N}(p,s)$$

* Renormalization:

For most quantities multiplicative: $\Pi^R(\Gamma, \vec{q}) = Z_{\mathcal{O}} \Pi(\Gamma, \vec{q})$

- non-singlet: connected
- singlet: both connected and disconnected

* Extraction of form factors

$$\begin{vmatrix} \text{Sachs FFs:} \\ G_E(Q^2) = F_1(Q^2) - \frac{Q^2}{4m_N^2} F_2(Q^2) \\ G_M(Q^2) = F_1(Q^2) + F_2(Q^2) \end{vmatrix}$$

Electromagnetic:

$$\langle N(p',s')|\mathcal{V}_{\mu}^{q}|N(p,s)\rangle \propto \bar{u}_{N}(p',s')\left(\gamma_{\mu}F_{1}^{q}(Q^{2})+\frac{i\sigma_{\mu\nu}Q^{\nu}}{2m_{N}}F_{2}^{q}(Q^{2})\right)u_{N}(p,s)$$

Axial:

$$\langle N(p',s')|\mathcal{A}_{\mu}^{q}|N(p,s)\rangle \propto \bar{u}_{N}(p',s')\left(\gamma_{\mu}\gamma_{5}G_{A}^{q}(Q^{2})+\frac{\gamma_{5}Q_{\mu}}{2m_{N}}G_{p}^{q}(Q^{2})\right)u_{N}(p,s)$$

* Renormalization:

For most quantities multiplicative: $\Pi^R(\Gamma, \vec{q}) = Z_{\mathcal{O}} \Pi(\Gamma, \vec{q})$

- non-singlet: connected
- singlet: both connected and disconnected

* Extraction of form factors

Sachs FFs:
$$G_E(Q^2) = F_1(Q^2) - \frac{Q^2}{4m_N^2} F_2(Q^2)$$
 $G_M(Q^2) = F_1(Q^2) + F_2(Q^2)$

Electromagnetic:

$$\langle N(p',s')|\mathcal{V}_{\mu}^{q}|N(p,s)\rangle \propto \bar{u}_{N}(p',s')\left(\gamma_{\mu}F_{1}^{q}(Q^{2})+\frac{i\sigma_{\mu\nu}Q^{\nu}}{2m_{N}}F_{2}^{q}(Q^{2})\right)u_{N}(p,s)$$

Axial:

$$\langle N(p',s')|\mathcal{A}_{\mu}^{q}|N(p,s)\rangle \propto \bar{u}_{N}(p',s')\left(\gamma_{\mu}\gamma_{5}G_{A}^{q}(Q^{2})+\frac{\gamma_{5}Q_{\mu}}{2m_{N}}G_{p}^{q}(Q^{2})\right)u_{N}(p,s)$$

In this work:

- Isovector combination (u-d): only connected
- Flavor decompositions: both connected and disconnected
- Strange & charm contributions purely disconnected (for nucleon)

- ★ Fermion part: Twisted Mass including a clover term (ETMC)
 - Maximally twisted fermions:
 - ightharpoonup Automatic $\mathcal{O}(a)$ -improvement
 - ▶ No operator improvement needed, simplifies renormalization
 - · Addition of clover term reduces isospin symmetry breaking
 - ⇒ simulation at physical pion masses became feasible
- ★ Gluon action: Iwasaki

- ★ Fermion part: Twisted Mass including a clover term (ETMC)
 - Maximally twisted fermions:
 - ightharpoonup Automatic $\mathcal{O}(a)$ -improvement
 - ▶ No operator improvement needed, simplifies renormalization
 - Addition of clover term reduces isospin symmetry breaking
 - ⇒ simulation at physical pion masses became feasible
- ★ Gluon action: Iwasaki

	Ensemble	N_f	$L^3 \times T$	a(fm)	m_π (MeV)	Lm_{π}
	Nf2.48c	2	$48^{3} \times 96$	0.094	135	2.98
NEW!	Nf2.64c	2	$64^3 \times 128$	0.094	132	3.97
NEW!	Nf211.64c	2+1+1	$64^3 \times 128$	0.081	135	3.55

- ★ Fermion part: Twisted Mass including a clover term (ETMC)
 - Maximally twisted fermions:
 - ightharpoonup Automatic $\mathcal{O}(a)$ -improvement
 - ▶ No operator improvement needed, simplifies renormalization
 - Addition of clover term reduces isospin symmetry breaking
 - ⇒ simulation at physical pion masses became feasible
- ★ Gluon action: Iwasaki

	Ensemble	N_f	$L^3 \times T$	a(fm)	m_π (MeV)	Lm_{π}
_	Nf2.48c	2	$48^{3} \times 96$	0.094	135	2.98
NEW!	Nf2.64c	2	$64^3 \times 128$	0.094	132	3.97 ← Poster
NEW! N	Nf211.64c	2+1+1	$64^3 \times 128$	0.081	135	3.55 by C. Lauer

- ★ Fermion part: Twisted Mass including a clover term (ETMC)
 - Maximally twisted fermions:
 - ightharpoonup Automatic $\mathcal{O}(a)$ -improvement
 - ▶ No operator improvement needed, simplifies renormalization
 - Addition of clover term reduces isospin symmetry breaking
 - ⇒ simulation at physical pion masses became feasible
- ★ Gluon action: Iwasaki

	Ensemble	N_f	$L^3 \times T$	a(fm)	m_π (MeV)	Lm_{π}	
	Nf2.48c	2	$48^{3} \times 96$	0.094	135	2.98	
NEW!	Nf2.64c	2	$64^{3} \times 128$	0.094	132	3.97 <	= Poster
NEW!	Nf211.64c	2+1+1	$64^3 \times 128$	0.081	135	3.55	by C. Lauer
					•		C. Lauei

Nf211.64c (conn.)

Nf211.64c (disc.)

$T_{ m sink}$	N_{conf}	$N_{ m src}$	$T_{\rm sink}$	$N_{ m conf}$	$N_{ m src}$	Flavor	$N_{\rm conf}$	N_{src}
		_	16a	625	16	u	750	200
12 <i>a</i>	625	2	18 <i>a</i>	625	32	d	750	200
14 a	625	6	20 <i>a</i>	625	32	S	750	200

Results PRELIMINARY: • More statistics to collect • finalize analyses

Quark Disconnected diagram

- ★ Great progress in computing disconnected diagram
- ★ Computer architecture (GPUs) and special techniques allow calculations at the physical point
- ★ In this work:
 - Hierarchical probing (HP)
 - One-end trick for Twisted Mass Fermions (OET)
 - Spin-color dilution (SCD)
 - Deflation (D)

Quark Disconnected diagram

- ★ Great progress in computing disconnected diagram
- ★ Computer architecture (GPUs) and special techniques allow calculations at the physical point
- In this work:
 - Hierarchical probing (HP)
 - One-end trick for Twisted Mass Fermions (OET)
 - Spin-color dilution (SCD)
 - Deflation (D)

In particular:

light quarks:

- HP: 2³ distance (512 Hadamard vectors)
- OET: 1 stochastic source
- D: 200 low eigenvectors

strange quark:

- HP: 2² distance (32 Hadamard vectors)
- **OET: 12 stochastic source**

OUTLINE OF TALK

- 1. Introduction
- 2. Lattice Evaluation
- 3. E/M form factors
- 4. Axial form factors
- 5. Summary Future prospects

Nucleon EM Form Factors

- \star G_E : slope of lattice data diff from experiments
- ★ G_M : small- Q^2 has improved slope ($T_{\rm sink} = 1.6 {\rm fm}$)

Nucleon EM Form Factors

- ★ G_E: slope of lattice data diff from experiments
- ★ G_M : small- Q^2 has improved slope $(T_{\rm sink} = 1.6 {\rm fm})$
- * excited states investigations:

$$T_{\rm sink} = 1 - 1.6 {\rm fm}$$

Nucleon charged radii

Dipole fit: motivated by vector-meson pole contributions to FFs

$$G_E(Q^2) = \frac{1}{\left(1 + \frac{Q^2}{m_E^2}\right)}, \quad G_M(Q^2) = \frac{G_M(0)}{\left(1 + \frac{Q^2}{m_M^2}\right)^2}, \quad \langle r_{E,M}^2 \rangle = \frac{12}{m_{E,M}^2}$$

z-expansion: model-independent, expected to model better the low- Q^2

$$G_i(Q^2) = \sum_k a_k z(Q^2)^k, z(Q^2) = \frac{\sqrt{t_{cut} + Q^2} - \sqrt{t_{cut}}}{\sqrt{t_{cut} + Q^2} + \sqrt{t_{cut}}}, t_{cut} = 4m_\pi^2, \langle r_{E,M}^2 \rangle = -\frac{6a_1^{E,M}}{4t_{cut}a_0^{E,M}}$$

- \bigstar Estimation of radii strongly depends on small Q^2
- \star Large volume: access to Q^2 close to zero

★ Delicate to extract quantity, must examine fit methods

Nucleon EM Form Factors (disconnected)

- ★ Clear signal due to algorithmic advances
- \star $T_{
 m sink}$ chosen based on excited states and quality of fits

OUTLINE OF TALK

- 1. Introduction
- 2. Lattice Evaluation
- 3. E/M form factors
- 4. Axial form factors
- 5. Summary Future prospects

Nucleon Axial charge

- ★ Determined directly from lattice data
- * forward limit of matrix element of axial current
- ★ We study volume and quenching effects

- \star Need of $T_{\rm sink}>1.3{
 m fm}$ to find agreement with experiment
- ★ Volume effects within statistical uncertainties
- \star Currently increasing statistics for $T_{\rm sink}$ =1.5, 1.7fm

Nucleon axial form factors

Left: Data for $T_{\rm sink}{>}1.2{\rm fm}$ compatible, but slope different

Right: Lattice data compatible with upper range of neutrino-nucleus cross sections (green band) and with MiniBooNE (red band)

Nucleon axial form factors

Left: Data for $T_{\rm sink}{>}1.2{\rm fm}$ compatible, but slope different

Right: Lattice data compatible with upper range of neutrino-nucleus cross sections (green band) and with MiniBooNE (red band)

Parametrization of lattice data:

Dipole fit, z-expansion

Deviations on $\langle r_A \rangle$ from different methods

Nucleon Axial Form Factors (isoscalar)

- ★ Light quark disconnected contributions are sizable
- \star G_A^s small but necessary in order to bring G_A^{total} close to experimental value
- $\star G_p^{u+d,DI}$ cancels (within uncertainties) $G_p^{u+d,CI}$
- \star G_p^s suppressed compared to light quark contribution

OUTLINE OF TALK

- 1. Introduction
- 2. Lattice Evaluation
- 3. E/M form factors
- 4. Axial form factors
- 5. Summary Future prospects

Summary - Future prospects

Summary

- ★ Dedicated study of nucleon structure quantities using 3 ensembles and multiple source-sink separations
- Investigation of systematic uncertainties: excited states, volume effects, quenching effects
 - g_A agreement with experiment for $T_{\rm sink} \gtrsim 1.5 {\rm fm}$
 - ullet Slope of Axial & E/M form factors sensitive to $T_{
 m sink}$
- \bigstar Disconnected contributions to FFs have been computed for u,d,s:
 - necessary to bring g_A^{u+d} in agreement with experiment
 - ullet large contributions to G^{u+d}_p that partly cancels connected part
 - strange contributions to FFs non-negligible

Summary - Future prospects

Summary

- ★ Dedicated study of nucleon structure quantities using 3 ensembles and multiple source-sink separations
- Investigation of systematic uncertainties: excited states, volume effects, quenching effects
 - g_A agreement with experiment for $T_{\rm sink} \gtrsim 1.5 {\rm fm}$
 - Slope of Axial & E/M form factors sensitive to $T_{
 m sink}$
- ★ Disconnected contributions to FFs have been computed for u, d, s:
 - necessary to bring g_A^{u+d} in agreement with experiment
 - large contributions to G^{u+d}_p that partly cancels connected part
 - strange contributions to FFs non-negligible

Future work

- ★ Increase statistics and addition of separations larger than 1.5fm
- ★ Connected and disconnected contributions to charged radii
- \star 2 additional 2+1+1 ensembles @ physical point and same physical volume as $64^3 \times 128$: $80^3 \times 160 (a \sim 0.065 \text{fm})$, $96^3 \times 192 (a \sim 0.055 \text{fm})$

THANK YOU

Grant No. PHY-1714407

BACKUP

Nucleon Axial Form Factors

- \star Excited states suppressed for $T_{\rm sink}{>}1.3{\rm fm}$
- ★ Limited data from experiment
 [S. Choi et al. Phys. Rev. Lett. 71 3927 (1993)]
- ★ Pion pole fit:

$$G_p(Q^2) = G_A(Q^2) \frac{4m_N^2}{(Q^2 + m_\pi^2)}$$

Nucleon Axial Form Factors

- \star Excited states suppressed for $T_{\rm sink}{>}1.3{\rm fm}$
- ★ Limited data from experiment
 [S. Choi et al. Phys. Rev. Lett. 71 3927 (1993)]
- ★ Pion pole fit:

$$G_p(Q^2) = G_A(Q^2) \frac{4m_N^2}{(Q^2 + m_\pi^2)}$$

- **★ Comparison with HB** χ PT $g_p^{\star} = \frac{m_{\mu}}{2m_N} G_p(Q^2 = 0.88 m_{\mu}^2)$
- \star g_p^{\star} moves towards HB χ PT estimate as $T_{\rm sink}$ increases
- ★ Sensitive quantity to extract