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Outline

Beyond Complex Langevin approach.

Free particles.
m Relation with thimbles.

Oscillators and scalar fields.



Sign problem

Dream: compute efficiently the "complex averages”

B Jn d"x p(x)O(x)
(0)p = RfRn d"x p(x)




Positive representations

Old idea: find P > 0 such that

/d”x p(x)O(x) = N/d”xd”y P(x,y)O(x+1iy).  (2)
(CI'I

]Rn

m Complex Langevin?.
m Thimbles? (up to residual sign problem).
m Matching conditions.

m Beyond Complex Langevin® (BCL).

Parisi (83), Klauder (84)
2Pham (83), Christofretti, Di Renzo, Scorzato (12)
*Wosiek (15)



Solving the matching conditions*

m Variant of the moment problem.

m Space of solutions P infinite dimensional.
m P convex and invariant under smearing.
m Very regular solutions exist.

m To solve the problem you need the solution?

*Salcedo (97), Weingarten (02), Salcedo (07), Seiler, Wosiek (17), Ruba,
Wyrzykowski (17)



BCL approach

Question
How to satisfy matching conditions without solving the theory?

Idea
Obtain p by integrating out auxillary variables.



BCL approach

Generalities

z=x+1Iy, (3a)
Z=x—1ly. (3b)

m Allow Z # z*.
® X,y become complex.

m Z will be integrated out.



BCL approach

Generalities

Step 1 find P(z, Z) positive for Z = z* and holomorphic such that

o(z) = /r 4"z P(z, 7). (4)

Step 2 using generalized Cauchy show that

z,Z independent

/"d”z O(z)p(z) = /rd”z O(z)/rd”f P(z,z)

= / d"xd"y O(x + iy)P(x,y).

(5)

z=z*



BCL approach

Generalities

Crucial equation

/C d"xd"y P(z,2)0(x +iy) = /r d"z /r 4"z P(z,2)0(z). (6)

_V
z=z* z,Z independent

holds provided that
cn homotopy Ml (7)
with [ 2 co at intermediate stages.

This condition is vacuous only for gaussian integrals.



Gaussian theories

Simple way to find positive representations for gaussian p:

Gaussian Integrate Match
ansatz out z with p

Locality? Symmetries?



Gaussian theories

Free particle

Let’s apply this scheme to the quantum free particle model.

S =3 501 — %) (8)

J

Local
gaussian

ansatz New family

preserving
symmetries

of solutions




Gaussian theories

Free particle

/Dx eSH O[] :/Dny Pl y;ulOlx+iy]. (9)

— integrand depends on p
explicitly p independent

Interesting p — oo limit:

Plx,y; 1] ~ 0ly — Yenimple[x]]€”PFY (for p — 00)  (10)



BCL and thimbles

Known Thimbles
BCL with finite
examples width




Gaussian theories

Harmonic oscillator

What about the oscillator?

S = 3 (50—~ 3. (11)

J

Local
gaussian
ansatz

Matching e’ type
condition solutions

This can be understood by looking at thimbles.



Gaussian theories

Harmonic oscillator - thimble transformation

Step 1 Fourier transformation

SIX =D MKk, (12a)
k
Ak = %sinz (": - ;) (12b)

Step 2 Contour rotations such that /S < 0.

3 e~ % Gp if \ <O,
e+ Qi if Ax >0,



Gaussian theories

Harmonic oscillator - thimble transformation

Step 3 Inverse Fourier — nonlocal S[q] < 0.

sl = X (- @+ 5 ) -2 3 ndlad? (1)

J Ak<0



Gaussian theories

Harmonic oscillator - Monte Carlo result for the propagator
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Gaussian theories

. . . . . 2
Harmonic oscillator - continuum limit of (x°)
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Gaussian theories

Lessons from Morse theorem

Eigenvalues S
Caustics of §2S ingularities
el of thimbles

change sign




Gaussian theories

Intermission

m Caustics — obstructions to locality of BCL actions.
m Generalization to field theories self-evident.

m Next slides: free complex scalarsin d =1+ 1.



Gaussian theories

Free complex scalar - thimble transformation

Action
2
SI1 = 5 3 (0 — m?62) (15)
X,

Repeat the trick that worked for the oscillator:

@Z)x = ny¢ya (163)
@Z_)x = _Xy¢;7 (16b)

1 A ~ 2
Sl = =50 > 88— m?| [3(p)] (16c)
P



Gaussian theories

Complex scalar - real parts of eigenvalues




Gaussian theories

Complex scalar - imaginary parts of eigenvalues




Gaussian theories

Complex scalar - timelike cut of the propagator
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Gaussian theories

Complex scalar - spacelike cut of the propagator
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Gaussian theories

Free complex scalar - some observations

m Infinitesimal Wick's rotation is crucial.

d—1
m Number of negative eigenvalues ~ (/,\\%) )

S[¢] strongly nonlocal and UV-singular.

Light-cone and UV structure nicely reproduced up to cutoff.

m Finite volume effects much larger than in Euclidean space.



Summary

m We simulated gaussian field theory in Minkowski time.
m Nonlocal, but positive path integral measure was used.

m Connection between our approach and thimbles was seen.

Including interactions is an open problem.



Generalized Cauchy theorem

Cauchy-Riemann

—
oP oP
ozt 0z 0 (17)

denote w

d|P(z,2) d"zNd"z | =0 —

Stokes' theorem:

/ w= / dw = 0. (18)

boundary?” bulk?"+1



Free particle - positive representation

1, _
5= Z [26(21+1 —Z)(zj41 — ) + o(x — y)?| - (19)
J
Continuum limit:

e —0, (20a)

7 5 . (20b)

€



Thimble transformation in the continuum

i

¢(x) = /ddy (e%5+(x —yim) e o (x i m)) b(y),
(21a)
d+(x;m) = ((21;‘;I)9‘19(:l:(p2 — m?))e P, (21b)
I+ (x; m) + 6-(x; m) = §(x). (21¢)



Thimble transformation in the continuum

Distributions 4+ = Bessel functions. For d = 2:

m

ooy My T 105 e (22)

o (x; m)|g_p =
UV singularity:

e m) ~ 5 <_(x_1,0)2 + ”;2 jog <m “(x— i0)2>> e
(23)



