Simulations of gaussian systems in Minkowski time

B. Ruba J. Wosiek

Jagiellonian University (Cracow)

July 27, 2018

Outline

- Beyond Complex Langevin approach.
- Free particles.
- Relation with thimbles.
- Oscillators and scalar fields.

Sign problem

Dream: compute efficiently the "complex averages"

$$\langle \mathcal{O} \rangle_{\rho} = \frac{\int_{\mathbb{R}^n} \mathrm{d}^n x \ \rho(x) \mathcal{O}(x)}{\int_{\mathbb{R}^n} \mathrm{d}^n x \ \rho(x)}.$$
 (1)

Positive representations

Old idea: find $P \ge 0$ such that

$$\int_{\mathbb{R}^n} d^n x \ \rho(x) \mathcal{O}(x) = \mathcal{N} \int_{\mathbb{C}^n} d^n x d^n y \ P(x, y) \mathcal{O}(x + iy). \tag{2}$$

- Complex Langevin¹.
- Thimbles² (up to residual sign problem).
- Matching conditions.
- Beyond Complex Langevin³ (BCL).

¹Parisi (83), Klauder (84)

²Pham (83), Christofretti, Di Renzo, Scorzato (12)

³Wosiek (15)

Solving the matching conditions⁴

- Variant of the moment problem.
- Space of solutions \mathcal{P} infinite dimensional.
- \blacksquare \mathcal{P} convex and invariant under smearing.
- Very regular solutions exist.
- To solve the problem you need the solution?

⁴Salcedo (97), Weingarten (02), Salcedo (07), Seiler, Wosiek (17), Ruba, Wyrzykowski (17)

BCL approach

Question

How to satisfy matching conditions without solving the theory?

Idea

Obtain ρ by integrating out auxillary variables.

BCL approach Generalities

$$z = x + iy,$$
 (3a)

$$\bar{z} = x - iy.$$
 (3b)

- Allow $\bar{z} \neq z^*$.
- \bullet x, y become complex.
- *z* will be integrated out.

BCL approach Generalities

Step 1 find $P(z,\bar{z})$ positive for $\bar{z}=z^*$ and holomorphic such that

$$\rho(z) = \int_{\bar{\Gamma}} d^n \bar{z} \ P(z, \bar{z}). \tag{4}$$

Step 2 using generalized Cauchy show that

$$\int_{\mathbb{R}^{n}} d^{n}z \, \mathcal{O}(z) \rho(z) = \int_{\Gamma} d^{n}z \, \mathcal{O}(z) \int_{\bar{\Gamma}} d^{n}\bar{z} \, P(z,\bar{z})$$

$$= \underbrace{\int_{\mathbb{C}^{n}} d^{n}x d^{n}y \, \mathcal{O}(x+iy) P(x,y)}_{\bar{z}=z^{*}}.$$
(5)

Crucial equation

$$\underbrace{\int_{\mathbb{C}^n} d^n x d^n y \ P(z, \bar{z}) \mathcal{O}(x + iy)}_{\bar{z} = z^*} = \underbrace{\int_{\Gamma} d^n z \int_{\bar{\Gamma}} d^n \bar{z} \ P(z, \bar{z}) \mathcal{O}(z)}_{z, \bar{z} \text{ independent}}.$$
(6)

holds provided that

$$\mathbb{C}^n \xrightarrow{\mathsf{homotopy}} \Gamma \times \bar{\Gamma} \tag{7}$$

with $\int \neq \infty$ at intermediate stages.

This condition is vacuous **only** for gaussian integrals.

Simple way to find positive representations for gaussian ρ :

Locality? Symmetries?

Gaussian theories Free particle

Let's apply this scheme to the quantum free particle model.

$$S[x] = \sum_{j} \frac{1}{2\epsilon} (x_{j+1} - x_j)^2.$$
 (8)

Gaussian theories Free particle

$$\underbrace{\int Dx \ e^{iS[x]} \mathcal{O}[x]}_{\text{explicitly } \mu \text{ independent}} = \int DxDy \ \underbrace{P[x,y;\mu] \mathcal{O}[x+iy]}_{\text{integrand depends on } \mu}. \tag{9}$$

Interesting $\mu \to \infty$ limit:

$$P[x, y; \mu] \sim \delta[y - y_{\text{thimble}}[x]]e^{iS[x+iy]}$$
 (for $\mu \to \infty$) (10)

BCL and thimbles

What about the oscillator?

$$S[x] = \sum_{j} \left(\frac{1}{2\epsilon} (x_{j+1} - x_j)^2 - \frac{\epsilon}{2} x_j^2 \right). \tag{11}$$

This can be understood by looking at thimbles.

Step 1 Fourier transformation

$$S[x] = \sum_{k} \lambda_k \tilde{x}_k \tilde{x}_{-k}, \tag{12a}$$

$$\lambda_k = \frac{1}{2\epsilon} \sin^2 \left(\frac{k\pi}{n} - \frac{\epsilon}{2} \right) \tag{12b}$$

Step 2 Contour rotations such that iS < 0.

$$\tilde{x}_k = \begin{cases} e^{-\frac{i\pi}{4}} \ \tilde{q}_k & \text{if } \lambda_k < 0, \\ e^{\frac{i\pi}{4}} \ \tilde{q}_k & \text{if } \lambda_k > 0, \end{cases}$$
(13)

Step 3 Inverse Fourier \longrightarrow nonlocal $S[q] \le 0$.

$$iS[q] = \sum_{j} \left(-\frac{1}{2\epsilon} (q_{j+1} - q_j)^2 + \frac{\epsilon}{2} q_j^2 \right) - 2 \sum_{\lambda_k < 0} |\lambda_k| |\tilde{q}_k|^2$$
 (14)

Harmonic oscillator - Monte Carlo result for the propagator

Harmonic oscillator - continuum limit of $\langle x^2 \rangle$

Gaussian theories Lessons from Morse theorem

- Caustics obstructions to locality of BCL actions.
- Generalization to field theories self-evident.
- Next slides: free complex scalars in d = 1 + 1.

Action

$$S[\phi] = \frac{a^2}{2} \sum_{x,\mu} \left(\partial_{\mu} \phi_x \partial^{\mu} \phi_x - m^2 \phi_x^2 \right). \tag{15}$$

Repeat the trick that worked for the oscillator:

$$\phi_{\mathsf{x}} = \mathsf{K}_{\mathsf{x}\mathsf{y}}\psi_{\mathsf{y}},\tag{16a}$$

$$\bar{\phi}_{\mathsf{x}} = \bar{K}_{\mathsf{x}\mathsf{y}}\psi_{\mathsf{y}}^{*},\tag{16b}$$

$$iS[\psi] = -rac{1}{2V}\sum_{p}\left|\hat{p^{\mu}}\hat{p_{\mu}}-m^{2}\right|\left|\tilde{\psi}(p)\right|^{2}.$$
 (16c)

Complex scalar - real parts of eigenvalues

Complex scalar - imaginary parts of eigenvalues

Complex scalar - timelike cut of the propagator

Complex scalar - spacelike cut of the propagator

- Infinitesimal Wick's rotation is crucial.
- Number of negative eigenvalues $\sim \left(\frac{\Lambda_{\rm UV}}{\Lambda_{\rm IR}}\right)^{d-1}$.
- $S[\phi]$ strongly nonlocal and UV-singular.
- Light-cone and UV structure nicely reproduced up to cutoff.
- Finite volume effects much larger than in Euclidean space.

Summary

- We simulated gaussian field theory in Minkowski time.
- Nonlocal, but positive path integral measure was used.
- Connection between our approach and thimbles was seen.
- Including interactions is an open problem.

Generalized Cauchy theorem

$$d\left(\overbrace{P(z,\bar{z}) d^{n}z \wedge d^{n}\bar{z}}^{\text{denote }\omega}\right) = 0 \iff \frac{\partial P}{\partial z^{*}} = \frac{\partial P}{\partial \bar{z}^{*}} = 0$$
 (17)

Stokes' theorem:

$$\int_{\text{boundary}^{2n}} \omega = \int_{\text{bulk}^{2n+1}} d\omega = 0.$$
 (18)

Free particle - positive representation

$$S = \sum_{j} \left[\frac{1}{2\epsilon} (\bar{z}_{j+1} - \bar{z}_{j})(z_{j+1} - z_{j}) + \sigma(x_{j} - y_{j})^{2} \right]. \tag{19}$$

Continuum limit:

$$\epsilon \to 0,$$
 (20a)

$$\frac{\sigma}{\epsilon} \to \infty$$
. (20b)

Thimble transformation in the continuum

$$\phi(x) = \int d^{d}y \left(e^{\frac{i\pi}{4}} \delta_{+}(x - y; m) + e^{-\frac{i\pi}{4}} \delta_{-}(x - y; m) \right) \psi(y),$$

$$(21a)$$

$$\delta_{\pm}(x; m) = \int \frac{d^{d}p}{(2\pi)^{d}} \theta(\pm(p^{2} - m^{2})) e^{-ipx},$$

$$\delta_{+}(x; m) + \delta_{-}(x; m) = \delta(x).$$

$$(21c)$$

Thimble transformation in the continuum

Distributions $\delta_+ = \text{Bessel functions}$. For d = 2:

$$\delta_{+}(x;m)|_{d=2} = \frac{m}{2\pi^{2}\sqrt{-(x-i0)^{2}}}K_{1}(m\sqrt{-(x-i0)^{2}}) + \text{c.c.}$$
 (22)

UV singularity:

$$\delta_{+}(x; m) \sim \frac{1}{2\pi^{2}} \left(-\frac{1}{(x-i0)^{2}} + \frac{m^{2}}{2} \log \left(m\sqrt{-(x-i0)^{2}} \right) \right) + \text{c.c.}$$
(23)