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Intro & Background
• Gauge fixing not necessary for Wilson’s standard lattice gauge theory with 

compact algebra-valued gauge fields


• Problems in Chiral gauge theories with manifestly local lattice fermions 


• These lattice fermions break chiral symmetry explicitly on lattice


• Functional integration takes place also along the gauge orbit (i.e. in the 
longitudinal direction or the direction of gauge transformation)


Longitudinal gauge degrees of freedom (lgdof) couple to 
the physical degrees of freedom in the terms that break 
gauge invariance

Lattice chiral gauge theories break gauge invariance
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Hence a theory with gauge-non-invariant terms 

Physical fields + lgdof (scalar fields)

The new action               

is now gauge-invariant under the extended local transformations:
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Reduced model has a global symmetry: �x ! h�x with h 2 G



Early proposals of Lattice Chiral Gauge Theory


• Smit-Swift / Wilson-Yukawa model

• Domain-wall waveguide model


all failed because of interaction of the lgdofs with fermions.   

Remedy: Gauge fix the lgdofs to control their dynamics

Gauge invariant observables remains intact provided the following integral 

over an orbit is a non-zero constant.
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A no-go theorem for compact gauge fields

Start with a manifestly gauge invariant lattice gauge theory, the Wilson way:
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is required to be independent of     , so that only a constant was inserted inZGF U Z

If this requirement is fulfilled, gauge-invariant correlation functions of the gauge-fixed

theory are identical to those of the unfixed (manifestly gauge invariant) theory.

Neuberger 1987
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Indeed ZGF|t=1 = ZGF|t=0 independent of U

But ZGF|t=0 = 0

because the integrand is then devoid of any Grassmann variables

) ZGF|t=1 = ZGF = 0

Expectation value of any gauge-invariant operator has the indeterminate form 

If pure Yang Mills on lattice cannot be non-perturbatively gauge fixed, there 
would be no hope for lattice Chiral Gauge Theories in the gauge-fixing 
approach.



Gauge-fixing with compact gauge fields

Cannot maintain BRST 


Need to evade Neuberger’s no-go theorem


For U(1) lattice gauge theory: 

Break BRST explicitly, restore it by tuning counter-terms in the 
continuum limit and in the process decouple the lgdofs


For non-Abelian lattice gauge theory (e.g. SU(2)): 

Modify BRST to gauge-fix only the coset space leaving a subgroup 
(U(1)) gauge invariant —> eBRST formalism 



U(1) Lattice gauge theory with HD gauge fixing term
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The action has an unique absolute minimum at Uxµ = 1

where

In the naive continuum limit, the HD gauge-fixing term
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Weak coupling perturbation theory near g = 0, ̃ ! 1
with ⇠ ⇠ 1

Golterman & Shamir 1997



What happens near the WCPT point?

Expand action in powers of      , using constant field approximation: 
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Critical surface:  ⌘ FM�FMD(g, ̃) = 0

where the gauge boson (photon) is rendered massless

hgAµi = ±
✓
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6̃

◆1/4

, 8µ for  < FM�FMD

hgAµi = 0, 8µ for  � FM�FMD

The phase with the vector condensate is called the FMD phase 

Continuum limit is to be taken at FM-FMD transition from within the FM phase 
where gauge symmetry is recovered and as a result the lgdofs decouple

The above picture is validated very well for weak gauge couplings



Observables for numerical study
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In addition, photon and scalar propagators in momentum space

For weak gauge couplings

for large enough


approaching FM-FMD from FM side

reveals free massless photons and 

the lgdofs appear to be decoupled

g  1
̃

Investigations of U(1) Wilson-Yukawa and domain-wall waveguide models in the 
reduced limit exhibit free chiral fermions 



What happens at large gauge coupling?
AKD & Mugdha Sarkar 2016, 2017
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Main Conclusions of the HD Abelian Gauge-fixing 
at large gauge couplings

• The physics at the large bare 
gauge couplings (free massless 
photons with lgdofs decoupled) 
appears to be the same as in 
the weak gauge couplings and 
is controlled by the perturbative 
point


• The tricritical line appears to be the only candidate for non-trivial physics

• Multihit Metropolis (MM) fails to produce faithful field configurations at 
larger values of     , and HMC appears to do much better

g = 0, ̃ ! 1

̃



Gauge fixed Yang Mills theory on lattice
Schaden 1999;    Golterman & Shamir 2004, 2006, 2013, 2014

In addition to its importance in regard to 


• lattice chiral gauge theory

• an alternate formulation of gauge theories


it is interesting to ask: if non-perturbatively the dynamics of the longitudinal sector 
can affect the physics of the transverse degrees of freedom, given that 

are both asymptotically free 

g and g̃
(g̃2 = ⇠g2)

One way to evade the no-go theorem: Introduce equivariant BRST (eBRST)
Gauge fix only the coset space leaving minimally the Cartan subgroup unfixed

For example, for the SU(2) Yang Mills theory, gauge fix SU(2)/U(1) and the U(1) 
gauge invariance  is left intact

Nilpotency of BRST is modified and a 4-ghost term appears



eBRST: SU(2)/U(1) case

BRST eBRST

s = �iC s = �iC 

sVµ = Dµ(V )C
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Uµ = exp (iVµ)



The eBRST-invariant gauge-fixing action

The gauge fixing partition function, a theory on the gauge orbit, 
does not depend on  U and g̃2 = ⇠g2

Now, because of the presence of the 4-ghost term, it is also not zero, 
thus evading the no-go

For any U, ZGF(U, ⇠g
2) 6= 0 defines a TFT

INVARIANCE THEOREM

hO(U)iunfixed = hO(U)ieBRST

Restricting to expectation values of gauge-invariant operators, the 
eBRST gauge-fixed theory is rigorously equivalent to the unfixed theory

F ⇠ Dµ(A)Wµ ̃ =
1

2⇠g2
=

1

2g̃2
=

�̃

2



Now go to the trivial orbit (          )   of the eBRST theory U = 1

That is the Reduced Model discussed at the beginning, consisting of the lgdofs 
and the ghost fields, still symmetric under eBRST, local U(1) and now a global 
SU(2) symmetry (more on this in text talk by Mugdha Sarkar)

Can there be SSB in a TFT? 

If yes, what is its effect on the full eBRST theory? Is eBRST broken too?

SU(2)global ! U(1)global?

We have implemented the program on the lattice for numerical simulation 

- a very hard problem

At the very preliminary level, we find evidence for the breaking of the global 
SU(2) to U(1) in the reduced theory. 

What this means for the full eBRST theory is still unclear, but our very 
preliminary results are so far consistent with the eBRST theory going into a 
Higgs-like phase with the W and ghost fields appearing to acquire mass. 

eBRST is probably left unbroken since this symmetry can allow equal mass 
terms for coset gauge fields and ghosts


