Investigations of $\mathcal{N}=1$ supersymmetric SU(3) Yang-Mills theory

Henning Gerber

Münster-DESY(-Regensburg-Jena) collaboration

Lattice 2018 - East Lansing

- Standard model is incomplete
 - SUSY could cure some of the problems (hierarchy problem, dark matter, etc.)
 - SUSY is not yet very well understood
 - (nonperturbative) SUSY-breaking
- Extended symmetry allows better theoretical control of the theory
 - Tool to understand nonperturbative phenomena of QFT's
- Gauge part of supersymmetric QCD (SQCD, talks by G. Bergner, B. Wellegehausen)

$$\mathcal{N}=1$$
 $SU(3)$ SUSY Yang-Mills Theory

Simulation

Lattice formulation
Sign problem
Finite size analysis
Topological freezing
Ensembles

Chiral extrapolation & Ward Identities

Spectrum

Summary & Outlook

$$\mathcal{N} = 1$$
 SU(3) SUSY Yang-Mills Theory

$$\mathcal{L} = \operatorname{Tr}\left(-\frac{1}{2}F_{\mu\nu}F^{\mu\nu} + \mathrm{i}\bar{\lambda}\not\!\!D\lambda - m_0\bar{\lambda}\lambda\right)$$

- $A_{\mu}^{a}(x)$: gauge fields
- $\lambda(x)$: gluino fields, Majorana fermions in adjoint representation

•
$$(D_{\mu}\lambda)^a = \partial_{\mu}\lambda^a + gf_{abc}A^b_{\mu}\lambda^c$$

• $m_0 \bar{\lambda} \lambda$: soft SUSY-breaking term

G. R. Farrar, G. Gabadadze, M. Schwetz, 1999

SYM

00

Why SUSY?

Indeed formulation of chiral multiplet of 0^- , 0^+ , spin-1/2 groundstates.

- best signal from gluino-glue
- mesonic states noisier but can be handled
 - 0^+ -glueball challenging, but consistent with a- f_0
 - 0^- -glueball operator seems to have no overlap with 0^- groundstate.
 - Analysis of excited multiplets ongoing
 - Started analysing baryonic states (Talk by S. Ali, canceled)

Lattice formulation

- Wilson fermions
- Clover term to supress O(a) effects

$$-\frac{c_{sw}}{4}\bar{\lambda}\sigma_{\mu\nu}F^{\mu\nu}\lambda$$

Sign problem in SYM: Pfaffian (instead of determinant)

$$\int \left[d\lambda \right] e^{-\frac{1}{2}\bar{\lambda}D_w\lambda} = \mathsf{Pf}(\mathit{CD}_w) = \pm \sqrt{\det D_w}, \qquad \mathit{C} \hat{=} \mathsf{charge\ conj.\ operator}$$

- SUSY is explicitely broken by the lattice
- Wilson fermions: breaking of chiral symmetry
- Veneziano, Curci [1987]: SUSY restaration in the chiral and continuum limit:
 - limit of vanishing renormalized gluino mass $m_{\lambda}{
 ightarrow}0$

RHMC, negative sign rare when simulation not too close to the chiral limit

Eigenvalues of the Dirac-Wilson operator, $\beta=$ 5.5, $\kappa=$ 0.1683. Green: $\langle v|~\gamma^{f 5}~|v\rangle >$ 0.001

 \times 32.16 \times 32, 16³ \times 32, 24³ \times 48 $f(x) = exp(-\alpha L)/L$

- finite size effects vanish for $L/r_0 > 2.4$
- also observed in SU(2)

Spectrum

Simulation

00000

Topological freezing

Left: Topological charge history for different β , Right: Topological charge history for different lattice sizes

Ensembles

β	largest Volume	lattice spacing [fm]	lattice size [fm]
5.4	$12^{3} \times 24$	0.067	0.8
5.45	$16^{3} \times 32$		
5.5	$16^{3} \times 32$	0.057	0.912
5.6	$24^{3} \times 48$	0.047	1.12
5.8	$16^{3} \times 32$	not used (finite size effects)	

• for each β : \sim 4 κ , \sim 4000 configs

Summary & Outlook

- - \Rightarrow Adjoint pion a- π is pseudo-Nambu-Goldstone particle from spontaneous chiral symmetry breaking
 - tune $m_{\pi}^2 \rightarrow 0$ for chiral limit
- Supersymmetric Ward Identities (arXiv:1711.05504, Lattice 2017 talk by S. Ali)
- 3. Change of the gluino condensate at zero temperature at the chiral phase transition (C. Lopez' talk)

- κ_c from $m_{a-\pi}$ and from SUSY Ward Identities quite close
- small discrepancy due to lattice artifacts, vanish in the continuum limit

gluino-glue mass in units of w_0 for different values of β

- We investigate SU(3) SYM with Wilson fermions and clover improvement
- Sign problem, topological freezing, chiral extrapolations are under control
- Ensembles: 4 different β , \sim 4 different κ each
- SUSY Ward Identities hint to supersymmetric continuum limit
- Spectrum compatible with supermultiplet formation in the continuum limit, however errorbars still large
- Final analysis with full statistics is currently being carried out
- Continuum extrapolation to be done
- For SQCD see talks by G. Bergner, B. Wellegehausen

Spectrum

Thank you for your attention!!

- Calculate the lowest eigenvalues of Q and corresponding eigenvectors
 - using Arnoldi (ARPACK)
 - Chebyshev Polynomials of order 11
 - Even/Odd-Preconditioning
- Stochastic estimator technique for space orthogonal to the previously calculated eigenvectors:

•
$$\frac{1}{N_S} \sum_{i}^{N_S} \left| \eta^i \right\rangle \left\langle \eta^i \right| = \mathbb{1} + \mathcal{O}\left(\sqrt{N_S}\right)$$

- use Z₄-noise
- $ullet \left. Q \left| s^i
 ight> = \left| \eta^i
 ight>$
- $Q^{-1} = rac{1}{N_S} \sum_{i}^{N_S} \left| s^i \right\rangle \left\langle \eta^i \right|$
- · Conjugate gradient
- $N_S = 40$ for $\beta = 1.9$, $32^3 \times 64$

Infinitesimal supersymmetry transformations:

$$\begin{split} \delta A_{\mu}(x) &= -2g\bar{\lambda}(x)\gamma_{\mu}\epsilon(x) \\ \delta \lambda(x) &= -\frac{\mathrm{i}}{g}\sigma_{\mu\nu}F_{\mu\nu}(x)\epsilon(x) \\ \delta \bar{\lambda}(x) &= +\frac{\mathrm{i}}{g}\bar{\epsilon}(x)\sigma_{\mu\nu}F_{\mu\nu}(x), \end{split}$$

 $\epsilon(x)$: Grassmann valued parameter.

Noether's theorem yields a supercurrent

$$S_{\mu}(x) = -\frac{2i}{g} \text{Tr} [F_{\rho\nu}(x) \sigma_{\rho\nu} \gamma_{\mu} \lambda(x)]$$

with
$$\partial^{\mu} S_{\mu}(x) = m_{\tilde{g}} \chi(x)$$
, $\chi(x) = \frac{2\mathrm{i}}{g} \mathrm{Tr} \big[F_{\rho\nu}(x) \sigma_{\rho\nu} \lambda(x) \big]$

In the quantised theory the corresponding unrenormalised SUSY Ward identities are

$$\langle \partial^{\mu} S_{\mu}(x) Q(y) \rangle = m_0 \langle \chi(x) Q(y) \rangle - \left\langle \frac{\delta Q(y)}{\delta \overline{\epsilon}(x)} \right\rangle.$$

- Q(y) is any suitable insertion operator
- last term represents a contact term
 - vanishes if Q(y) is localised at space-time points different from $x_{\text{dis}} \sim 20$

Renormalisation

- gluino mass receives an additive renormalisation
 - the supercurrent mixes with another dimension 7/2 current: $T_{\mu}(x) = \frac{2i}{\sigma} \mathrm{Trs} \big[F_{\mu\nu}(x) \gamma_{\nu} \lambda(x) \big]$

Resulting SUSY Ward identity, omitting contact terms:

$$\left\langle \left(Z_S \partial^{\mu} S_{\mu}(x) + Z_T \partial^{\mu} T_{\mu}(x)\right) Q(y) \right\rangle = m_S \left\langle \chi(x) Q(y) \right\rangle$$

 m_S is the subtracted gluino mass, and Z_S and Z_T are renormalisation coefficients.

A renormalised supercurrent can then be defined through $S_{\mu}^{R}=Z_{S}S_{\mu}+Z_{T}T_{\mu}$.

Glueballs:
$$O(x) = \sum_{i < j} P_{ij}(x)$$

• Gluino-glue: $O^{\alpha}(x) = \sum_{i < j} \sigma_{ij}^{\alpha\beta} \operatorname{Tr}_{c} \left[P_{ij}(x) \tilde{\mathbf{g}}^{\beta}(x) \right]$

• Mesons: $O(x) = \overline{\tilde{g}}(x)\Gamma\tilde{g}(x)$

