Higher order fluctuations form imaginary chemical potential

Szabolcs Borsanyi, Zoltan Fodor, <u>Jana N. Guenther</u>, Sandor K. Katz, K.K. Szabó, Attila Pasztor, Israel Portillo, Claudia Ratti

July 25th 2018

The (T, μ_B) -phase diagram of QCD

Our observables: T_c , Equation of state, Fluctuations

2 Connecting to experiment

Dealing with the sign problem

- Reweighting techniques
- Canonical ensemble
- Complex Langevin
- Lefshetz Thimble
- Density of state methods
- Dual variables
- $\bullet \ \ \mathsf{Taylor} \ \mathsf{expansion} \ \longrightarrow \ \mathsf{previous} \ \mathsf{talk}$
- Imaginary μ
- . . .

Analytic continuation

Different functions

Analytical continuation on $N_t = 12$ raw data

Different functions

Condition: $\chi_8 \lesssim \chi_4 \longrightarrow f(\hat{\mu}_B) = a + b\hat{\mu}_B^2 + c\hat{\mu}_B^4 + \frac{b\epsilon}{840}\hat{\mu}_B^6$

Simulation details

- Borsanyi et al., Borsanyi:2018grb, arXiv:1805.04445
- Action: tree-level Symanzik improved gauge action, with four times stout smeared staggered fermions
- 2+1+1 flavor, on LCP with pion and kaon mass
- Simulation at $\mu_S = \mu_Q = 0$
- Lattice size: $48^3 \times 12$

•
$$\frac{\mu_B}{T} = i \frac{j\pi}{8}$$
 with $j = 0, 1, 2, 3, 4, 5, 6$ and 7

The fit function

$$\chi_{i,j,k}^{B,Q,S} = \frac{\partial^{i+j+k}(p/T^4)}{(\partial\hat{\mu}_B)^i(\partial\hat{\mu}_Q)^j(\partial\hat{\mu}_S)^k}, \quad \hat{\mu} = \frac{\mu}{T}$$
$$\frac{p}{T^4} = \chi_0^B + \frac{1}{2!}\chi_2^B\hat{\mu}_B^2 + \frac{1}{4!}\chi_4^B\hat{\mu}_B^4 + \frac{1}{6!}\chi_6^B\hat{\mu}_B^6 + \frac{1}{8!}\chi_8^B\hat{\mu}_B^8 + \frac{1}{10!}\chi_{10}^B\hat{\mu}_B^{10}$$
From this we can calculate the derivatives that we can measure on the lattice:

$$\begin{split} \chi_1^B(\hat{\mu}_B) &= \chi_2^B \hat{\mu}_B + \frac{1}{3!} \chi_4^B \hat{\mu}_B^3 + \frac{1}{5!} \chi_6^B \hat{\mu}_B^5 + \frac{1}{7!} \chi_8^B \hat{\mu}_B^7 + \frac{1}{9!} \chi_{10}^B \hat{\mu}_B^9 \\ \chi_2^B(\hat{\mu}_B) &= \chi_2^B + \frac{1}{2!} \chi_4^B \hat{\mu}_B^2 + \frac{1}{4!} \chi_6^B \hat{\mu}_B^4 + \frac{1}{6!} \chi_8^B \hat{\mu}_B^6 + \frac{1}{8!} \chi_{10}^B \hat{\mu}_B^8 \\ \chi_3^B(\hat{\mu}_B) &= \chi_4^B \hat{\mu}_B + \frac{1}{3!} \chi_6^B \hat{\mu}_B^3 + \frac{1}{5!} \chi_8^B \hat{\mu}_B^5 + \frac{1}{7!} \chi_{10}^B \hat{\mu}_B^7 \\ \chi_4^B(\hat{\mu}_B) &= \chi_4^B + \frac{1}{2!} \chi_6^B \hat{\mu}_B^2 + \frac{1}{4!} \chi_8^B \hat{\mu}_B^4 + \frac{1}{6!} \chi_{10}^B \hat{\mu}_B^6 \end{split}$$

 σ

The fit function

$$\begin{split} \chi^{B,Q,S}_{i,j,k} &= \frac{\partial^{i+j+k} (p/T^4)}{(\partial \hat{\mu}_B)^i (\partial \hat{\mu}_Q)^j (\partial \hat{\mu}_S)^k} , \quad \hat{\mu} = \frac{\mu}{T} \\ \frac{p}{T^4} &= \chi^B_0 + \frac{1}{2!} \chi^B_2 \hat{\mu}^2_B + \frac{1}{4!} \chi^B_4 \hat{\mu}^4_B + \frac{1}{6!} \chi^B_6 \hat{\mu}^6_B + \frac{1}{8!} \chi^B_8 \hat{\mu}^8_B + \frac{1}{10!} \chi^B_{10} \hat{\mu}^{10}_B \end{split}$$
 From this we can calculate the derivatives that we can measure on the lattice:

$$\begin{split} \chi_1^B(\hat{\mu}_B) &= \chi_2^B \hat{\mu}_B + \frac{1}{3!} \chi_4^B \hat{\mu}_B^3 + \frac{1}{5!} \chi_6^B \hat{\mu}_B^5 + \frac{1}{7!} \epsilon_1 \chi_4^B \hat{\mu}_B^7 + \frac{1}{9!} \epsilon_2 \chi_4^B \hat{\mu}_B^9 \\ \chi_2^B(\hat{\mu}_B) &= \chi_2^B + \frac{1}{2!} \chi_4^B \hat{\mu}_B^2 + \frac{1}{4!} \chi_6^B \hat{\mu}_B^4 + \frac{1}{6!} \epsilon_1 \chi_4^B \hat{\mu}_B^6 + \frac{1}{8!} \epsilon_2 \chi_4^B \hat{\mu}_B^8 \\ \chi_3^B(\hat{\mu}_B) &= \chi_4^B \hat{\mu}_B + \frac{1}{3!} \chi_6^B \hat{\mu}_B^3 + \frac{1}{5!} \epsilon_1 \chi_4^B \hat{\mu}_B^5 + \frac{1}{7!} \epsilon_2 \chi_4^B \hat{\mu}_B^7 \\ \chi_4^B(\hat{\mu}_B) &= \chi_4^B + \frac{1}{2!} \chi_6^B \hat{\mu}_B^2 + \frac{1}{4!} \epsilon_1 \chi_4^B \hat{\mu}_B^4 + \frac{1}{6!} \epsilon_2 \chi_4^B \hat{\mu}_B^6 \\ \end{split}$$
 where ϵ_1 and ϵ_2 are drawn randomly from a normal with $\mu = -1.25$ and $\sigma = 2.75$ distribution.

Motivating the prior - Toy model without critical endpoint

- Start with some parametrization of the curve χ^B_1/μ_B at $\mu=0$
- \bullet Assume that the only difference in the physics at finite μ is a shift in this curve
- The inflection point of this curve is one possible definition of T_c , so shift the curve by using the κ values found in the literature
- You now have a model prediction of χ_1^B for any finite μ , differentiate it a few times at $\mu = 0$ to get estimates of χ_4^B , χ_6^B and χ_8^B NOTE: The model assumes no criticality

Fluctuations in the toy model

The simple model described in the previous slide without criticality

χ^{B}_{2} , χ^{B}_{4} , χ^{B}_{6} and χ^{B}_{8}

[D'Elia et al., DElia:2016jqh], see also [Bazavov et al., Bazavov:2017dus]

$\chi^{\mathcal{B}}_{2}$, $\overline{\chi^{\mathcal{B}}_{4}}$, $\chi^{\mathcal{B}}_{6}$ and $\chi^{\mathcal{B}}_{8}$

[D'Elia et al., DElia:2016jqh], see also [Bazavov et al., Bazavov:2017dus]

2 Connecting to experiment

Observables

Cumulants of the net baryon number distributions:

• mean M_B

• variance σ_B^2

• skewness S_B : asymmetry of the distribution

• kurtosis κ_B : "tailedness" of the distribution

Au+Au Collision Net-proton 0.4,<0.8 (GeV(c) |y|<0.5 Skellam D 0.5% 0.05% 0.00%

Calculating observables

We have derivatives with respect to $\hat{\mu}_B$, $\hat{\mu}_Q$ and $\hat{\mu}_S$ of the pressure at $\mu_S = \mu_Q = 0$. Notation:

$$\chi_{i,j,k}^{\mathcal{B},\mathcal{Q},\mathcal{S}} = \frac{\partial^{i+j+k}(p/T^4)}{(\partial\hat{\mu}_B)^i(\partial\hat{\mu}_Q)^j(\partial\hat{\mu}_S)^k},$$

with $\hat{\mu}_i = \mu/T$.

We want ratios of the cumulants that are approximately independent of the volume at $\mu_B > 0$, $\langle n_S \rangle = 0$ and $\langle n_Q \rangle = 0.4 \langle n_B \rangle$:

Vumber of Events

(f) 62.4 GeV

(g) 200 GeV

$$\frac{M_B}{\sigma_B^2} = \frac{\chi_1^B(T,\hat{\mu}_B)}{\chi_2^B(T,\hat{\mu}_B)} = \hat{\mu}_B r_{12}^{B,1} + \hat{\mu}_B^3 r_{12}^{B,3} + \dots$$
$$\frac{S_B \sigma_B^3}{M_B} = \frac{\chi_3^B(T,\hat{\mu}_B)}{\chi_1^B(T,\hat{\mu}_B)} = r_{31}^{B,0} + \hat{\mu}_B^2 r_{31}^{B,2} + \dots$$
$$\kappa_B \sigma_B^2 = \frac{\chi_4^B(T,\hat{\mu}_B)}{\chi_2^B(T,\hat{\mu}_B)} = r_{42}^{B,0} + \hat{\mu}_B^2 r_{42}^{B,2} + \hat{\mu}_B^4 r_{42}^{B,4} + \dots$$

[Bazavov et al., Bazavov:2017dus], [Karsch, Karsch:2017zzw] plot: [STAR, Adamczyk:2013dal]

Calculating observables II

$$\kappa_B \sigma_B^2 = \frac{\chi_4^B(T, \hat{\mu}_B)}{\chi_2^B(T, \hat{\mu}_B)} = r_{42}^{B,0} + \hat{\mu}_B^2 r_{42}^{B,2} + \hat{\mu}_B^4 r_{42}^{B,4} + \dots$$

The $r^{B, \star}_{42}$ can be expressed in terms of the χ^{BQS}_{ijk}

$$r_{42}^{B,0} = \frac{\chi_4^B}{\chi_2^B}$$

 \longrightarrow up to 4th derivative

Calculating observables II

$$\kappa_B \sigma_B^2 = \frac{\chi_4^B(T, \hat{\mu}_B)}{\chi_2^B(T, \hat{\mu}_B)} = r_{42}^{B,0} + \hat{\mu}_B^2 r_{42}^{B,2} + \hat{\mu}_B^4 r_{42}^{B,4} + \dots$$

The $r^{B, \star}_{42}$ can be expressed in terms of the χ^{BQS}_{ijk}

$$r_{42}^{B,0} = \frac{\chi_4^B}{\chi_2^B}$$

 \longrightarrow up to 4th derivative

$$\begin{split} {}_{42}^{B,2} &= \quad \frac{1}{\chi_2^B} \left(\frac{1}{2} \chi_{42}^{BS} s_1^2 + \chi_{411}^{BQS} q_1 s_1 + \frac{1}{2} \chi_{42}^{BQ} q_1^2 + \chi_{51}^{BS} s_1 + \chi_{51}^{BQ} q_1 + \frac{1}{2} \chi_6^B \right) \\ &- \quad \frac{\chi_4^B}{(\chi_2^B)^2} \left(\frac{1}{2} \chi_{22}^{BS} s_1^2 + \chi_{211}^{BQS} q_1 s_1 + \frac{1}{2} \chi_{22}^{BQ} q_1^2 + \chi_{51}^{BS} s_1 + \chi_{31}^{BQ} q_1 + \frac{1}{2} \chi_4^B \right) \\ q_1 &= \quad \frac{(0.4 \chi_{11}^{BS} - \chi_{11}^{QS}) \chi_{11}^{BS} - (0.4 \chi_2^B - \chi_{11}^{BQ}) \chi_{22}^S}{(0.4 \chi_{11}^{BQ} - \chi_2^Q) \chi_2^S - (0.4 \chi_{11}^{BS} - \chi_{11}^{DS}) \chi_{11}^{BS}} \\ s_1 &= \quad - \left(\frac{\chi_{12}^{SS}}{\chi_1^2} \frac{(0.4 \chi_{11}^{BS} - \chi_{11}^{DS}) \chi_{12}^{BS} - (0.4 \chi_{11}^{BS} - \chi_{11}^{DS}) \chi_{11}^{SS}} - (0.4 \chi_{12}^B - \chi_{11}^{BQ}) \chi_{22}^S} \right) \\ \end{split}$$

 \longrightarrow up to 6th derivative

Calculating observables II

$$\kappa_B \sigma_B^2 = \frac{\chi_4^B(T, \hat{\mu}_B)}{\chi_2^B(T, \hat{\mu}_B)} = r_{42}^{B,0} + \hat{\mu}_B^2 r_{42}^{B,2} + \hat{\mu}_B^4 r_{42}^{B,4} + \dots$$

The $r^{B, \star}_{42}$ can be expressed in terms of the χ^{BQS}_{ijk}

$$r_{42}^{B,0} = \frac{\chi_4^B}{\chi_2^B}$$

 \longrightarrow up to 4th derivative

$$\begin{array}{rcl} {}_{42}^{B,2} & = & \displaystyle \frac{1}{\chi_{2}^{B}} \left(\frac{1}{2} \chi_{42}^{BS} s_{1}^{2} + \chi_{411}^{BQS} q_{1} s_{1} + \frac{1}{2} \chi_{42}^{BQ} q_{1}^{2} + \chi_{51}^{BS} s_{1} + \chi_{51}^{BQ} q_{1} + \frac{1}{2} \chi_{6}^{B} \right) \\ & & - & \displaystyle \frac{\chi_{4}^{B}}{(\chi_{2}^{B})^{2}} \left(\frac{1}{2} \chi_{22}^{BS} s_{1}^{2} + \chi_{211}^{BQS} q_{1} s_{1} + \frac{1}{2} \chi_{22}^{BQ} q_{1}^{2} + \chi_{51}^{BS} s_{1} + \chi_{51}^{BQ} q_{1} + \frac{1}{2} \chi_{4}^{B} \right) \\ & q_{1} & = & \displaystyle \frac{(0.4 \chi_{11}^{BS} - \chi_{11}^{QS}) \chi_{11}^{BS} - (0.4 \chi_{2}^{B} - \chi_{11}^{BQ}) \chi_{2}^{S}}{(0.4 \chi_{11}^{BQ} - \chi_{2}^{Q}) \chi_{2}^{5} - (0.4 \chi_{11}^{BS} - \chi_{11}^{DS}) \chi_{11}^{BS}} \\ & s_{1} & = & - \left(\frac{\chi_{12}^{CS}}{\chi_{2}^{1}} \frac{(0.4 \chi_{11}^{BS} - \chi_{11}^{DS}) \chi_{12}^{BS} - (0.4 \chi_{11}^{BS} - \chi_{11}^{DS}) \chi_{11}^{DS}}{(0.4 \chi_{11}^{BQ} - \chi_{2}^{Q}) \chi_{2}^{5} - (0.4 \chi_{11}^{BS} - \chi_{11}^{DS}) \chi_{11}^{QS}} + \frac{\chi_{11}^{BS}}{\chi_{2}^{5}} \right) \end{array}$$

 \longrightarrow up to 6th derivative

$$r_{42}^{B,4} = \dots$$

 \longrightarrow up to 8th derivative

Measured observables

On each ensemble	e we measure the χ_{t}^{t}	$BQS_{i,j,k}$ up to the fourth	derivative:
• χ_1^B			
• χ^{B}_{2}	• v ^Q	0	
• χ^B_3	$\sim \chi_2$ $\sim BQ$	• χ_3^{\checkmark}	
• χ_4^B	$\chi_{2,1}$	• $\chi^{BQ}_{3,1}$	• χ^Q_4
• χ^{Q}_{1}	- x _{2,2}	• χ_3^S	 χ⁵₄
• $\chi_{1,1}^{BQ}$	• χ_2°	• $\chi^{BS}_{3,1}$	05
 	• $\chi_{2,1}^{BS}$	• χ_{21}^{QS}	• $\chi^{Q3}_{3,1}$
• $\chi^{BQ}_{1,3}$	• X _{2,2}	• $\chi^{BQS}_{1,2,1}$	 χ^{QS}_{2,2}
• χ_1^{S}	• $\chi_{1,1}^{QS}$	QS	• $\chi_{1.3}^{QS}$
• $\chi_{1,1}^{BS}$	• $\chi^{5005}_{1,1,1}$	$\sim \chi_{1,2}$,
• $\chi_{1,2}^{BS}$	• $\chi^{BQS}_{2,1,1}$	• $\chi_{1,1,2}$	
• $\chi^{BS}_{1,3}$			

Measured observables

On e	each ensemble we m	easure the $\chi^{BQS}_{i,i,k}$	up to the fourth	derivative:
۰	χ_1^B			
۰	χ_2^B	vQ	0	
٠	χ_3^B	ν λ2 "BQ	• χ_3^{\checkmark}	
۰	χ_4^B	$\chi_{2,1}$ $\chi_{2,2}^{BQ}$	• $\chi^{BQ}_{3,1}$	• χ^Q_4
۲	χ_1^{Q}	5 5	• χ_3^S	 χ⁵₄
٥	$\chi_{1,1}^{BQ}$	χ_2°	• $\chi^{BS}_{3,1}$	05
•	$\chi^{BQ}_{1,2}$	$\chi_{2,1}^{BS}$	• χ_{21}^{QS}	• $\chi_{3,1}^{Q3}$
۲	$\chi^{BQ}_{1,3}$	χ _{2,2}	• $\chi^{BQS}_{1,2,1}$	
•	χ_1^{S}	$\chi_{1,1}^{QS}$	QS	• $\chi_{1.3}^{QS}$
•	$\chi^{BS}_{1,1}$	$\chi_{1,1,1}^{BQS}$	$\chi_{1,2}$ χ_{BQS}	_,_
•	$\chi^{BS}_{1,2}$	$\chi^{BQ3}_{2,1,1}$	• $\chi_{1,1,2}$	
•	$\chi^{BS}_{1,3}$			

 $\overline{\chi^{BS}_{11}}$, $\overline{\chi^{BS}_{31}}$, χ^{BS}_{51} and χ^{BS}_{71}

$$\kappa_B \sigma_B^2 = \frac{\chi_4^B(T, \hat{\mu}_B)}{\chi_2^B(T, \hat{\mu}_B)} = r_{42}^{B,0} + \hat{\mu}_B^2 r_{42}^{B,2} + \hat{\mu}_B^4 r_{42}^{B,4} + \dots$$

$$\kappa_B \sigma_B^2 = \frac{\chi_4^B(T, \hat{\mu}_B)}{\chi_2^B(T, \hat{\mu}_B)} = r_{42}^{B,0} + \hat{\mu}_B^2 r_{42}^{B,2} + \hat{\mu}_B^4 r_{42}^{B,4} + \dots$$

$$\kappa_B \sigma_B^2 = \frac{\chi_4^B(T, \hat{\mu}_B)}{\chi_2^B(T, \hat{\mu}_B)} = r_{42}^{B,0} + \hat{\mu}_B^2 r_{42}^{B,2} + \hat{\mu}_B^4 r_{42}^{B,4} + \dots$$

$$\kappa_B \sigma_B^2 = \frac{\chi_4^B(T, \hat{\mu}_B)}{\chi_2^B(T, \hat{\mu}_B)} = r_{42}^{B,0} + \hat{\mu}_B^2 r_{42}^{B,2} + \hat{\mu}_B^4 r_{42}^{B,4} + \dots$$

$$\frac{S_B \sigma_B^3}{M_B} = \frac{\chi_3^B(T, \hat{\mu}_B)}{\chi_1^B(T, \hat{\mu}_B)} = r_{31}^{B,0} + \hat{\mu}_B^2 r_{31}^{B,2} + \dots$$

$$\frac{S_B \sigma_B^3}{M_B} = \frac{\chi_3^B(T, \hat{\mu}_B)}{\chi_1^B(T, \hat{\mu}_B)} = r_{31}^{B,0} + \hat{\mu}_B^2 r_{31}^{B,2} + \dots$$

$$\frac{S_B \sigma_B^3}{M_B} = \frac{\chi_3^B(T, \hat{\mu}_B)}{\chi_1^B(T, \hat{\mu}_B)} = r_{31}^{B,0} + \hat{\mu}_B^2 r_{31}^{B,2} + \dots$$

$$\frac{S_B \sigma_B^3}{M_B} = \frac{\chi_3^B(T, \hat{\mu}_B)}{\chi_1^B(T, \hat{\mu}_B)} = r_{31}^{B,0} + \hat{\mu}_B^2 r_{31}^{B,2} + \dots$$

Summary

The μ_B dependence can be written in terms of the Taylor expansion:

$$\begin{split} \chi^{BQS}_{i,j,k}(\hat{\mu}_B) &= \chi^{BQS}_{i,j,k}(0) + \hat{\mu}_B \left[\chi^{BQS}_{i+1,j,k}(0) \right. \\ &+ q_1 \chi^{BQS}_{i,j+1,k}(0) + s_1 \chi^{BQS}_{i,j,k+1}(0) \right] \\ &+ \frac{1}{2} \hat{\mu}^2_B \left[\chi^{BQS}_{i+2,j,k}(0) + s_1^2 \chi^{BQS}_{i,j+2,k}(0) + q_1^2 \chi^{BQS}_{i,j,k+1} \right. \\ &+ 2 q_1 s_1 \chi^{BQS}_{i,j+1,k+1}(0) + 2 s_1 \chi^{BQS}_{i+1,j+1,k}(0) \\ &+ 2 q_1 \chi^{BQS}_{i+1,j,k+1}(0) \right] + \dots \end{split}$$

