Towards models with an unified dynamical mechanism for elementary particle masses

Roberto Frezzotti & Giancarlo Rossi

Physics Department and INFN of Roma Tor Vergata

Centro Fermi – Roma – Italy

July 23, 2018 - MSU

East Lansing - Michigan - USA

Introduction

Talk based on

- R. Frezzotti and G.C. Rossi, Phys. Rev. D92 (2015) 054505 and work in preparation
- R. Frezzotti, M. Garofalo and G.C. Rossi, Phys. Rev. D93 (2016) 105030
- & on the results of recent lattice work (talk by M. Garofalo) in collaboration with
 - P. Dimopoulos, G.C. Rossi (Univ. of Roma Tor Vergata and Centro Fermi) and M. Garofalo (INFN of Roma Tor Vergata)
 - B. Kostrzewa, F. Pittler, C. Urbach (HISKP University of Bonn)

Outline:

- Elementary fermion mass mechanism as a non-perturbative "anomaly"
- Mass mechanism in a Toy Model with weak interactions ($g_W > 0$)
- Towards a realistic BSM model: mechanism & all interactions?
- Outlook & Conclusions

Fermion mass as a non-perturbative (NP) "anomaly"

Results in the talk by M. Garofalo ←⇒ unnoticed NP feature in QFT

- 1. Consider a renormalizable UV regulated gauge model (RGI scale Λ_S) with fermionic chiral symmetries ($\tilde{\chi}_{L,R}$) broken in hard way at the UV cutoff scale, Λ_{UV}
- 2. Include fundamental scalar doublet (ϕ) in order to have an exact chiral symmetry involving fermions and scalars: prerequisite for EW theory & no $\Lambda_{UV}\bar{Q}Q$ term
- 3. Interplay of strong gauge interactions and $\tilde{\chi}_{L,R}$ breaking \Rightarrow NP "anomaly" in the Nambu-Goldstone phase ($\langle \phi \rangle = v$): seen in $\tilde{\chi}_{L,R}$ Schwinger Dyson Eq.s (SDE)
- 4. In the critical model, $\eta = \eta_{cr}(\rho)$, where $\tilde{\chi}_{L,R}$ breaking is minimized we have bare $\tilde{\chi}_L$ SDE: $\partial \tilde{J}^{Li}(x) = \eta \, \tilde{\delta}^{Li} O_4^Y(x) + \Lambda_{UV}^{-2} \rho \, \tilde{\delta}^{Li} O_6^{Wil}(x)$

 - a) renormalized $\tilde{\chi}_L$ SDE in Wigner phase: $Z_{\tilde{J}} \partial \tilde{J}^{Li}(x) = \Lambda_{UV}^{-2} O_{n>6}^{Li}(x)$
 - b) renormalized $\tilde{\chi}_L$ SDE in NG phase: $Z_{\tilde{\jmath}} \partial \tilde{\jmath}^{Li}(x) = O_4^{Li}(x) + \Lambda_{UV}^{-2} O_{n \geq 6}^{Li}(x)$

NP fermion mass "anomaly" and LE effective action

What's $O_4^{Li}(x)$? In what context is it defined? Is it UV finite & RG invariant?

- 1. If non-zero, it should be finite & RG invariant: @ $\eta = \eta_{cr}(\rho)$ the current $Z_{\tilde{J}}\tilde{J}^{Li}$ is conserved up to $O(\Lambda_{UV}^{-2})$ in Wigner phase \Rightarrow SDE's r.h.s. RG invariant in NG phase
- 2. No exact WTI for $\tilde{\chi}_{L,R}$ fermionic transformations (even @ η_{cr}) \Rightarrow at NP level the renormalized form of $\tilde{\chi}_{L,R}$ SDE at low energy may differ in Wigner and NG phases [NP renormalization ultimately based on "common wisdom" + numerical evidence]
- 3. NP term in r.h.s. of the renormalized $\tilde{\chi}_{L,R}$ SDE \iff NP $\tilde{\chi}_{L,R}$ breaking terms in the LE effective action, Γ_{LE} , for correlators at momenta p s.t. $\Lambda_S \ll p \ll \Lambda_{UV}$
- 4. @ $\eta = \eta_{cr}(\rho)$ no $\tilde{\chi}_{L,R}$ breaking term is allowed in Γ_{LE}^{Wgner} as $\Lambda_{UV}^{-1} \to 0$; but Γ_{LE}^{NG} may include $\Lambda_S C_1(\bar{Q}_L U Q_R + \text{h.c.}), \dots \frac{\Lambda_S^2}{v^4} C_{-2}((\bar{Q}_L U Q_R)(\bar{Q}_L U Q_R) + \text{h.c.}), \dots$ ρ generic, effective fields in Γ_{LE}^{NG} : $U = \exp(\frac{i}{V}\sum_{i=1,2,3}\tau^i\zeta^i)$, $R = V + \zeta^0$
- $O_4^{L\,i}(x) = \tilde{\delta}^{L\,i}[\Lambda_S C_1(\bar{Q}_L U Q_R + \text{h.c.}) + \ldots] \quad \text{describes NP } \tilde{\chi}_{L,R} \text{ breaking in NG phase}$

NP mass in LE eff. action: universality, naturalness

Implications of RG invar. $\Lambda_S C_1(\bar{Q}_L U Q_R + \text{h.c.}) + \dots \text{ in } \Gamma_{LE}^{NG}$ for predictive power?

- 1. The whole $\tilde{\chi}_{L,R}$ breaking NP term in Γ^{NG}_{LE} , or in the r.h.s. of renormalized SDEs
 - a) is irreducibly different as an operator from Yukawa's $R(\bar{Q}_L U Q_R + \text{h.c.})$
 - b) cannot & needs not be renormalized by adding any Lagrangian counterterm
 - c) involves coefficients (\emph{C}_{1}) depending on the $\tilde{\chi}_{\textit{L},\textit{R}}$ breaking UV parameters (ρ)
- 2. LE physics determined by gauge coupling & $\chi_{L,R}$ parameters at the UV-scale: "universality" \iff equivalence classes of different UV complete models with identical $\chi_{L,R}$ effects at LE \iff take the representative with simplest $\chi_{L,R}$ term;
- 3. $m_Q^{eff} = C_1" \Lambda_S"$ with $C_1 = O(\alpha_S^2)$ and " $\Lambda_S" \sim \frac{\Lambda_S v^2}{\Lambda_S^2 + v^2}$ or so, vanishing as $v \to 0$ is the elementary fermion mass in Γ_{LE}^{NG} , normalized at same scale as $\bar{Q}_L U Q_R$ is natural à la 't Hooft: RGI scale Λ_S , no Yukawa mass due to minimization of $\chi_{L,R}$
- 4. Massless Goldstones $\zeta^{1,2,3}$: ... can be eaten up by massive W gauge bosons

Mechanism in Toy Model at $g_W > 0$

Mechanism in Toy Model with weak interactions ($g_W > 0$)

UV regularization left unspecified: hard UV cutoff $\Lambda_{UV} \sim \frac{1}{b}$

Simplest toy model with weak interactions

Introducing weak gauge interactions for L-handed fermions, what about

- \star definition and restoring of $\tilde{\chi}_{L,R}$ (fermionic chiral) symmetries ?
- ★ W-boson mass: from strong interactions & same mechanism as for fermions?

Extended toy model with minimal fermion content (avoiding global SU(2) anomaly) :

gauge: $SU(3)_s \times SU(2)_L$ ($g_Y = 0$) & Dirac fermions: $Q \in 3$ & $N \in 1$ of $SU(3)_s$

$$\mathcal{L}_{toy}(Q, N, A, \Phi, W) = \mathcal{L}_{kin}(Q, N, A, \Phi, W) + \mathcal{V}(\Phi) + \mathcal{L}_{Wil}(Q, N, A, \Phi, W) + \mathcal{L}_{Yuk}(Q, N, \Phi)$$

$$\begin{split} \mathcal{L}_{\textit{kin}} &= \frac{1}{4} F_{\mu\nu}^{A;a} F_{\mu\nu}^{A;a} + \frac{1}{4} F_{\mu\nu}^{W;i} F_{\mu\nu}^{W;i} + \bar{Q}_L \gamma_\mu \mathcal{D}_\mu^{A,W} Q_L + \bar{Q}_R \gamma_\mu \mathcal{D}_\mu^A Q_R \\ &+ \bar{N}_L \gamma_\mu \mathcal{D}_\mu^W N_L + \bar{N}_R \gamma_\mu \partial_\mu N_R + \frac{1}{2} \text{Tr} \big[\Phi^\dagger \overleftarrow{\mathcal{D}}_\mu^W \mathcal{D}_\mu^W \Phi \big] \end{split}$$

$$+\bar{N}_{L}\gamma_{\mu}\mathcal{D}_{\mu}^{W}N_{L}+\bar{N}_{R}\gamma_{\mu}\partial_{\mu}N_{R}+\frac{1}{2}\mathrm{Tr}\big[\Phi^{\dagger}\mathcal{D}_{\mu}^{W}\mathcal{D}_{\mu}^{W}\Phi\big]$$

$$\mathcal{L}_{Wil} = \frac{b^2}{2} \rho \left(\bar{Q}_L \overleftarrow{\mathcal{D}}_{\mu}^{A,W} \Phi \mathcal{D}_{\mu}^A Q_R + \bar{Q}_R \overleftarrow{\mathcal{D}}_{\mu}^A \Phi^{\dagger} \mathcal{D}_{\mu}^{A,W} Q_L + N_L \overleftarrow{\mathcal{D}}_{\mu}^W \Phi \partial_{\mu} N_R + \bar{N}_R \overleftarrow{\partial}_{\mu} \Phi^{\dagger} \mathcal{D}_{\mu}^W N_L \right)$$

 ϕ : SU(2)_L doublet, SU(3)_s singlet

matrix notation: $\Phi = [\tilde{\varphi}|\varphi]$, $\tilde{\varphi} = -i\tau^2\varphi^*$

Toy model with weak interactions: symmetries

Usual quartic scalar potential ($\hat{m}_{\Phi}^2 = m_0^2 - m_{cr}^2$) and Yukawa term (coupling η):

$$\mathcal{V}(\Phi) = rac{m_0^2}{2} \mathrm{Tr}igl[\Phi^\dagger\Phiigr] + rac{\lambda_0}{4} igl(\mathrm{Tr}igl[\Phi^\dagger\Phiigr]igr)^2 \qquad \quad \mathcal{L}_{Y\!\mathit{U}\!\mathit{k}}(Q,\Phi) = \eta \left(ar{Q}_{\!\mathit{L}}\Phi Q_{\!\mathit{R}} + ar{Q}_{\!\mathit{R}}\Phi^\dagger Q_{\!\mathit{L}}igr)$$

 $SU(2)_L$ gauge symmetry: $W^{1,2,3}_{\mu}$ bosons & covariant derivatives on f=Q, N, e.g.

$$\mathcal{D}_{\mu}^{A,W}f_{L} = (\partial_{\mu} - i\delta_{f,Q}g_{s}\lambda^{a}A_{\mu}^{a} - ig_{w}\frac{\tau^{i}}{2}W_{\mu}^{i})f_{L} \qquad \overline{f}_{L}\overleftarrow{\mathcal{D}}_{\mu}^{A,W} = \overline{f}_{L}(\overleftarrow{\partial}_{\mu} + i\delta_{f,Q}g_{s}\lambda^{a}A_{\mu}^{a} + ig_{w}\frac{\tau^{i}}{2}W_{\mu}^{i})$$

Global $SU(2)_L \times SU(2)_R$ invariance, if W's transform (as $\in su(2)_L$) under $\tilde{\chi}_L$:

$$\chi_L \equiv \tilde{\chi}_L \otimes \chi_L^{\Phi}$$
 and $\chi_R \equiv \tilde{\chi}_R \otimes \chi_R^{\Phi}$ with

$$\begin{split} \tilde{\chi}_L: \; Q[N]_L \rightarrow \Omega_L \, Q[N]_L \,, \; \bar{Q}[N]_L \rightarrow \bar{Q}[N]_L \, \Omega_L^\dagger \,, \qquad \chi_L^\Phi: \; \Phi \rightarrow \Omega_L \Phi \,, \qquad \Omega_L \in \text{SU}(2)_L \,, \\ W_\mu \rightarrow \Omega_L W_\mu \Omega_L^\dagger \,, \end{split}$$

$$\tilde{\chi}_{R}:\;Q[N]_{R}\rightarrow\Omega_{R}Q[N]_{R}\,,\\ \bar{Q}[N]_{R}\rightarrow\bar{Q}[N]_{R}\Omega_{R}^{\dagger}\,,\qquad\chi_{R}^{\Phi}:\;\Phi\rightarrow\Phi\Omega_{R}^{\dagger}\,,\qquad\Omega_{R}\in\text{SU}(2)_{R}\,,$$

 $\tilde{\chi}_{L,R}$ and $\chi_{L,R}^{\Phi}$ transf.s are no symmetries ... term $\operatorname{Tr}\left[\Phi^{\dagger}\overleftarrow{\mathcal{D}}_{\mu}^{W}\mathcal{D}_{\mu}^{W}\Phi\right]$ breaks $\tilde{\chi}_{L}$, too

$g_W>0$: maximal $ilde{\chi}$ —symmetry restoring at $(ho_{\it cr}\,,\eta_{\it cr})$

$$\begin{split} \partial_{\mu} \Big\langle \tilde{J}_{\mu}^{L,\,i}(x)\,\hat{O}(0) \Big\rangle &= \Big\langle \tilde{\Delta}_{L}^{i}\hat{O}(0) \Big\rangle \delta(x) - \eta \, \Big\langle \, \textstyle \sum_{f=Q,N} \Big(\overline{f}_{L} \frac{\tau^{i}}{2} \Phi f_{R} - \overline{f}_{R} \Phi^{\dagger} \frac{\tau^{i}}{2} f_{L} \Big)(x)\,\hat{O}(0) \Big\rangle + \\ &\quad - \frac{b^{2}}{2} \rho \, \Big\langle \, \textstyle \sum_{f=Q,N} \Big(\overline{f}_{L} \overleftarrow{\mathcal{D}}_{\mu}^{A,W} \frac{\tau^{i}}{2} \Phi \mathcal{D}_{\mu}^{A} f_{R} - \overline{f}_{R} \overleftarrow{\mathcal{D}}_{\mu}^{A} \Phi^{\dagger} \frac{\tau^{i}}{2} \mathcal{D}_{\mu}^{A,W} f_{L} \Big)(x)\,\hat{O}(0) \Big\rangle + \\ &\quad + \frac{i}{2} g_{W} \Big\langle \, \text{Tr} \, \Big(\Phi^{\dagger} \big[\frac{\tau^{i}}{2}, W_{\mu} \big] \mathcal{D}_{\mu}^{W} \Phi + \Phi^{\dagger} \overleftarrow{\mathcal{D}}_{\mu}^{W} \big[W_{\mu}, \frac{\tau^{i}}{2} \big] \Phi \Big)(x) \hat{O}(0) \Big\rangle \end{split}$$

$$\tilde{J}_{\mu}^{L,\,i} = \textstyle \sum_{f=Q,N} \left\{ \overline{f}_L \gamma_{\mu} \frac{\tau^{i}}{2} f_L - \frac{b^2}{2} \rho \Big(\overline{f}_L \frac{\tau^{i}}{2} \Phi \mathcal{D}_{\mu}^A f_R - \overline{f}_R \overleftarrow{\mathcal{D}}_{\mu}^A \Phi^{\dagger} \frac{\tau^{i}}{2} f_L \Big) \right\} \, + \, g_W \, \text{Tr} \left([W_{\nu}, F_{\mu\nu}^W] \frac{\tau^{i}}{2} \right) \, .$$

upon renormalization one expects the $\tilde{\chi}_L$ -SDE's of the LE effective theory to read

$$Z_{\bar{j}}\partial_{\mu}\left\langle \tilde{J}_{\mu}^{L,i}(x)\hat{O}(0)\right\rangle = \left\langle \tilde{\Delta}_{L}^{i}\hat{O}(0)\right\rangle\delta(x) - (\eta - \bar{\eta}_{L})\left\langle \sum_{f=Q,N}(\bar{f}_{L}\frac{\tau^{i}}{2}\Phi f_{R} - h.c.)(x)\hat{O}(0)\right\rangle + (1 - \bar{\tau}_{L})^{i}\left\langle g_{L}\right\rangle^{i}\left\langle g_{L}\right\rangle^{$$

$$+(1-\bar{\gamma})\frac{i}{2}g_{w}\Big\langle\operatorname{Tr}\Big(\Phi^{\dagger}[\frac{\tau^{i}}{2},W_{\mu}]\mathcal{D}_{\mu}^{W}\Phi+\Phi^{\dagger}\overleftarrow{\mathcal{D}}_{\mu}^{W}[W_{\mu},\frac{\tau^{i}}{2}]\Phi\Big)(x)\hat{O}(0)\Big\rangle+...+O(b^{2})$$

Critical model: $\eta_{cr} = \bar{\eta}_L(g_s, g_W; \mu_0, \lambda_0; \eta_{cr}, \rho_{cr})$, $1 = \bar{\gamma}(g_s, g_W; \mu_0, \lambda_0; \eta_{cr}, \rho_{cr})$

here $\tilde{\chi}_L$ and $\tilde{\chi}_R$ restored at low momenta, up to possible NP terms $\sim \Lambda_s^n$, n=2,1,...

$\hat{m}_{\Phi}^2 > 0$: full restoring of $\tilde{\chi}$ –symmetry @ (ρ_{cr}, η_{cr})

Wigner phase at (ρ_{cr}, η_{cr}) : $\mathcal{V}(\Phi)$ has a single minimum $(\hat{m}_{\Phi}^2 > 0)$ \Rightarrow renormalized

$$\mathsf{SDE's} \; \mathsf{of} \; \tilde{\chi}_{\mathsf{L}(R)} : \quad \; Z_{\tilde{\jmath}} \partial_{\mu} \Big\langle \tilde{J}_{\mu}^{\mathsf{L}(R),\; i}(x) \hat{O}(0) \Big\rangle = \Big\langle \tilde{\Delta}_{\mathsf{L}(R)}^{i} \hat{O}(0) \Big\rangle \delta(x) + \mathrm{O}(b^2)$$

- * requiring full Φ decoupling at low energy determines (ρ_{cr}, η_{cr}) : at LO see figure
- * no NP operators $\sim \Lambda_s$ occur in r.h.s. \iff due to $v_{\Phi} = 0$ here *U*-field is undefined
- Φ is fully decoupled & auxiliary in the effective action valid for $\Lambda_{UV} \gg p \gg \Lambda_s$

$$\Gamma_{\text{loc}}^{W\!f\!g} \equiv \Gamma_{\text{loc}}^{\hat{m}_{\Phi}^2 > 0} \ = \ \tfrac{1}{4} [(F^A F^A) + (F^W F^W)] + \sum_{f = Q, N} [\bar{f}_L \mathcal{D}^{A, W} f_L + \bar{f}_R \mathcal{D}^A f_R] + \mathcal{V}_{\text{eff}}^{\hat{m}_{\Phi}^2 > 0} [\Phi]$$

$\hat{m}_{\Phi}^2 <$ 0 : dynamical $ilde{\chi}$ SB & NP masses @ $(ho_{\it cr}\,,\eta_{\it cr})$

NG phase at (ρ_{cr}, η_{cr}) : $\mathcal{V}(\Phi)$ has many degenerate minima $(\hat{m}_{\Phi}^2 < 0) \Rightarrow$

 \star by def. of (ρ_{cr}, η_{cr}) no O(v) W-mass and O(v) Q(N)-mass terms: e.g. at LO

$$v^2$$
 [v^2 [v^2 [v^2 [v^2] = 0

- * under dynamical $\tilde{\chi}$ SB vacuum polarized by residual $O(b^2 v)$ $\tilde{\chi}$ -breaking terms
- * interplay of $O(b^2) \tilde{\chi}_{L,R}$ and $\tilde{\chi}SB$ dynamics $\Longrightarrow O(b^0) \tilde{\chi}_{L,R}$ terms in

$$\Gamma_{\text{loc}}^{NG} = \Gamma_{\text{loc}}^{\hat{m}_{\Phi}^2 < 0} + C_{1,Q} \Lambda_s [\bar{Q}_L U Q_R + \bar{Q}_R U^{\dagger} Q_L] + C_2 \Lambda_s^2 \operatorname{Tr} [U^{\dagger} \overleftarrow{\mathcal{D}}_{\mu}^W \mathcal{D}_{\mu}^W U]$$

$$\Leftrightarrow (M_W^{eff})^2 = g_W^2 C_2 \Lambda_s^2$$
 and $m_Q^{eff} = C_{1,Q} \Lambda_s$ from common mechanism; $m_N^{eff} = 0$

short distance NP vertex corrections

NP mass @ low energy

NP masses in Γ_{loc}^{NG} @ (ρ_{cr}, η_{cr}) : remarks

1. Effective NP masses modulated by gauge couplings & loop suppression factors:

$$C_2 = O(g_s^4 \rho_{cr}^6 N_f; \sim 3 \text{ loop suppr.}), \qquad C_{1,Q} = O(g_s^4 \rho_{cr}^3 N_f; \sim 2 \text{ loop suppr.})$$

 $C_{1,N} \,=\, 0$ owing to a symmetry of \mathcal{L}_{toy} valid in case of sterile R-handed fermions

2. Absence in Γ^{NG}_{loc} of term $\tilde{C}\Lambda_sR \operatorname{Tr}[U^{\dagger} \overset{\longleftarrow}{\mathcal{D}_{\mu}} \overset{W}{\mathcal{D}_{\mu}} U]$ is peculiar of the critical model:

as
$$ho_{cr}^2-
ho^2 o 0^+$$
 & $\eta o\eta_{cr}$ we have $1-ar{\gamma} o 0^+$, $m_{\zeta^0}^2\sim |\hat{m}_\Phi^2|/(1-ar{\gamma}) o +\infty$

 \Rightarrow decoupling of ζ^0 . For Γ^{NG}_{loc} to describe the decoupling of ζ^0 , e.g. in

$$WW o WW$$
 amplitudes, $| ilde{C}| \leq O((1- ilde{\gamma})^{1/2}) \stackrel{
ho o
ho\sigma,\eta o\eta_{cr}}{\longrightarrow} 0$ is necessary

- 3. NP kinetic term for GB's: canonical normalization $\Rightarrow U = \exp(i\vec{\zeta}\vec{\tau}/\sqrt{C_2}\Lambda_s)$ basic GBs NP-ly coupled so as to provide longitudinal d.o.f.s for massive Ws
- 4. Further $\tilde{\chi}$ -breaking terms in Γ^{NG} : $\frac{1}{\Lambda_S^2}[(\bar{Q}_L U Q_R)(\bar{Q}_R U^\dagger Q_L)]$, $[\operatorname{Tr}(D_\mu^W U^\dagger D_\mu^W U)]^2$, ...

Towards a realistic BSM model

Towards a realistic BSM model: mechanism & all interactions?

A possible explanation of why nothing new is seen close to the EW scale

Hints at $\Lambda_T \sim 5$ TeV: calling for experimental search in that energy range

Dynamical NP mass: towards a realistic model

Hypothesis: effective mass of elementary particles stemming from our mechanism Consistency of hypothesis with experimentally observed masses implies (hints at)

- new Tera-strong SU(N_T) interaction with RGI scale $\Lambda_T > M_W \gg \Lambda_{QCD}$
- new set of Tera-fermions subjected to the new force (besides to SM interactions)
 - $Q_L \in (N_T, 3, 2; Y_O^L), L_L \in (N_T, 1, 2; Y_L^L)$
 - $Q_R^u \in (N_T, 3, 1; Y_R^u)$, $L_R^u \in (N_T, 1, 1; Y_L^u)$

with (irrep. of $SU(N_T)$, $SU(3)_c$, $SU(2)_L$; $Y = Q_{em} - T_3$); besides SM fermions, e.g.

- $q_L \in (1,3,2;1/6)$, $\ell_L \in (1,3,2;-1/2)$
- $t_R \in (1,3,1;2/3)$, $\nu_R \in (1,1,1;0)$
- $b_R \in (1,3,1;-1/3)$, $\tau_R \in (1,1,1;-1)$
- composite higgs: a bound state in WW, ZZ, $Q\bar{Q}$, $L\bar{L}$... channel; Tera-fermions &
- -strong force crucial for binding; needed for unitarity of $WW \to WW$ scattering at LE

UV complete Lagrangian: towards a realistic model

$$\mathcal{L}^{BSMM} = \frac{1}{4} \left(F^B F^B + F^W F^W + F^A F^A + F^G F^G \right) + \frac{1}{2} \text{Tr} \left(\Phi^{\dagger} \overleftarrow{\mathcal{D}}_{\mu}^{B,W} \mathcal{D}_{\mu}^{B,W} \Phi \right) + \mathcal{V}(\Phi) +$$

$$+ \sum_{3 \text{ families}} \left[\bar{q}_L D^{BWA} q_L + \bar{q}_R^u D^{BA} q_R^u + \bar{q}_R^d D^{BA} q_R^d + \ell_L D^{BW} \ell_L + \bar{\ell}_R^u D^B \ell_R^u + \bar{\ell}_R^d D^B \ell_R^d \right] +$$

$$+ \left[\bar{Q}_L D^{BWAG} Q_L + \bar{Q}_R^u D^{BAG} Q_R^u + \bar{Q}_R^d D^{BAG} Q_R^d + \bar{L}_L D^{BWG} L_L + \bar{L}_R^u D^{BG} L_R^u + \bar{L}_R^d D^{BG} L_R^d \right] +$$

$$+ \sum_{f=q,\ell,Q,L} \left[\eta_{f,cr} (\bar{f}_L \tilde{\phi} f_R^u + \text{h.c.}) + \frac{1}{2} b^2 \rho_f O_{f,\tilde{\chi}}^u + \eta_{f,cr} (\bar{f}_L \phi f_R^d + \text{h.c.}) + \frac{1}{2} b^2 \rho_f O_{f,\tilde{\chi}}^d \right]$$

$$f \text{ runs over doublets } q^{(3)}, \ell^{(3)}, q^{(2)}, \ell^{(2)}, q^{(1)}, \ell^{(1)}, Q \text{ and } L \text{: in principle different } \rho_f \text{'s, but}$$

$$\tilde{\chi}\text{-symmetry restoring} \implies \sum_{f=r}^{N_{fort}} \rho_f^2 (1 + O(\rho_f^2)) = O(1) \text{ and } \eta_f = \eta_{f,cr} (\{\rho\})$$

- In NG phase: dynamical mechanism yields $m_{Q,L}^{eff} \sim \Lambda_T$ (as $\alpha_T(\Lambda_T) = O(1)$) \Longrightarrow m^{eff} for W^{\pm} , Z, q and ℓ (not for ν 's) [\sim Bardeen, Hill & Lindner, 1990 + "naturalness"]
- Assuming $ho_{Q,L} \simeq
 ho_{q^{(3)}} \simeq
 ho_{\ell^{(3)}}$: m_W^{eff} and m_t^{eff} may be $(0.10 \div 0.01) m_{Q,L}^{eff}$ due to loop suppression of m^{eff} 's (lattice test) & gauge coupling dependence: $g_T^4|_{\Lambda_T} \gg g_3^4|_{\Lambda_T}$

Masses of EW bosons, Tera-fermions and top quark

• $(M_Z^{eff})^2 = [(g_W^2 + g_Y^2)/g_W^2](M_W^{eff})^2$, while $M_{\gamma}^{eff} = 0$

$$\Gamma_{\textit{LE}}^{\textit{NG}} \,\supset\, \textit{C}_{2} \Lambda_{\textit{T}}^{2} \, \frac{1}{2} \text{Tr} \, [\textit{D}_{\mu}^{\textit{W},\textit{B}} \, \textit{U}^{\dagger} \, \textit{D}_{\mu}^{\textit{W},\textit{B}} \, \textit{U}] \,\supset\, \textit{C}_{2} \Lambda_{\textit{T}}^{2} [g_{\textit{W}}^{2} \, \textstyle \sum_{j=13} (\textit{W}^{j} \cdot \textit{W}^{j}) + g_{\textit{Y}}^{2} \, \textit{B} \cdot \textit{B} + 2g_{\textit{W}} g_{\textit{Y}} \, \textit{W}^{3} \cdot \textit{B}]$$

 \Rightarrow diagonalization in W^3-B sector gives massless γ and $M_Z^2=(g_W^2+g_Y^2)C_2\Lambda_T^2$ owing to the custodial $SU(2)_L\times SU(2)_B$ symmetry of \mathcal{L}^{BSMM} in the $g_Y\to 0$ limit

ullet Tera-hadron resonances with $E_{CoM} \simeq (2 \div 3) \emph{m}_{Q(L)}^{\it eff} \sim 5 \div 10$ TeV to be observed

$$m_{Q(L)}^{eff} = C_{1,Q(L)}\Lambda_{T}$$
 $C_{1,Q(L)}|_{\bar{\mu}} = O(g_{T}^{4}|_{\bar{\mu}}\rho_{Q,L}^{3}N_{Q+L}; \sim 2 \text{ loop suppr.}) \simeq O(1)$
 $m_{t} = C_{1,t}\Lambda_{T}$ $C_{1,t}|_{\bar{\mu}} = O(2g_{3}^{4}|_{\bar{\mu}}\rho_{3}^{3}N_{Q+L}; \sim 2 \text{ loop suppr.}) = O(0.05)$
 $(M_{W}^{eff})^{2} = g_{W}^{2}C_{2}\Lambda_{T}^{2}$ $C_{2}|_{\bar{\mu}} = O(g_{T}^{4}|_{\bar{\mu}}\rho_{Q,L}^{6}N_{Q+L}; \sim 3 \text{ loop suppr.}) \simeq O((0.03)^{2})$

3rd family SM fermions – unitarity & h boson

- Ratio M_{T-meson}/m_t^{pole}: key info for experiment, computable with controlled errors via lattice simulations with T-strong & QCD interactions, q and (unquenched) Q
- Order of magnitude of $m_{\tau}^{eff}/m_{t}^{eff} = O(\alpha_{Y}^{2}/\alpha_{3}^{2})$, $m_{b}^{eff}/m_{t}^{eff} = O(\alpha_{W}^{2}/\alpha_{3}^{2})$ and $m_{\nu_{\tau}}^{eff} = 0$ (due to a shift symmetry of sterile ν_{R}) can be understood $O_{a,\bar{x}}^{t} = \bar{q}_{L} \overleftarrow{\mathcal{D}}_{\mu}^{BWA} \widetilde{\phi} \mathcal{D}_{\mu}^{BA} t_{R} \qquad O_{a,\bar{x}}^{b} = \bar{q}_{L} (\mathcal{D} \mathcal{D}^{BW} \phi) b_{R} \qquad O_{\ell,\bar{x}}^{\tau} = \bar{\ell}_{L} \overleftarrow{\mathcal{D}}_{\mu}^{BW} \phi \mathcal{D}_{\mu}^{B} \tau_{R} \quad [+\text{h.c.}]$

more accuracy & other families require info/assumptions on $ilde{\chi}_{L,R}$ terms in $\mathcal{L}^{\textit{BSMM}}$

• Model $\mathcal{L}^{\textit{BSMM}}$ unitary with $M_W^{\textit{eff}} \ll M_{T-\text{meson}}, \, \alpha_W \ll 1$, no fundamental higgs: interactions must produce (among other bound states) one scalar state with SM-like couplings to W/Z or several scalars with tuned couplings for $W_LW_L \to W_LW_L$ to be unitary at energies $\ll \Lambda_T$ [Cornwall, Levin & Tiktopoulos 1974, Lee, Quigg & Thacker 1977]

125 GeV Higgs boson (h) as WW + ZZ bound state

WW channel: assume binding force from T-hadron exchange to form h, $M_h < 2M_W$

$$G(p) = \int d^4x e^{-i\vec{p}\vec{x}-ip_0x_0} V_3^{-1} \int d^3z \Big\langle W(\vec{x},x_0)W(\vec{z}+\vec{x},x_0)W^{\dagger}(\vec{0},0)W^{\dagger}(\vec{0},0)\Big\rangle$$

in free theory has a cut starting at $p^2=-4M_W^2$; in interaction due to weak and T-strong forces

$$G(p) = \frac{g_{analyt}(E_p^2, \vec{p}^2)}{p^2 + 4M_W^2} \left\{ 1 + \frac{\Delta_0^2}{p^2 + 4M_W^2} + \dots \right\} = \frac{g_{analyt}(E_p^2 \vec{p}^2)}{p^2 + 4M_W^2 - \Delta_0^2}$$
 with

 $\Delta_0^2 = O(1) g_W^4 4 M_W^2$ LE quantity, computable \Rightarrow a pole is expected to appear at

$$p^2 = -M_h^2 = -4M_W^2 + \Delta_0^2 \leftrightarrow M_h = 2M_W(1 - O(1)g_W^4)^{1/2}$$

Likely just one bound state: in non-relativistic approximation binding would be given by a potential well of height $V_0 \sim M_W$ and width $a \sim \Lambda_T^{-1}$, with $8 m_{red} V_0 a^2 \ll 1$

Effective Lagrangian for E < 1 TeV, h-couplings, ...

A model like \mathcal{L}^{BSMM} should be described for $E \ll \Lambda_T$ by the effective Lagrangian

$$\begin{split} \mathbb{E}_{LE} &= \frac{1}{4}F_AF_A + \frac{1}{4}(F_WF_W + F_BF_B) + \sum_f (\bar{f}_R \mathcal{D}_f^{A,B}f_R + \bar{f}_L \mathcal{D}_f^{A,W,B}f_L) + \\ &+ \frac{1}{2}\partial_\mu h \partial_\mu h + V_{eff}(h) + [\underline{C_2}\Lambda_T^2 + C_2'\Lambda_T h + C_2''h^2] \frac{1}{2} \mathrm{Tr} \left[D_\mu^{W,B}U^\dagger D_\mu^{W,B}U\right] + \\ &+ \sum_{f \neq \nu} [\underline{m_f} + y_f h] (\bar{f}_L \, u_{Y_f} \, f_R + \bar{f}_R \, u_{Y_f}^\dagger \, f_L) + \, O\Big(\frac{1}{\Lambda_T}\Big) \,, \qquad \Lambda_T = \mathrm{a} \,\, \mathrm{few} \,\, \mathrm{TeV} \end{split}$$
 where
$$U = \exp\Big[\frac{i \vec{\zeta} \cdot \vec{\tau}}{\sqrt{c} \Lambda_T}\Big] = \Big[\tilde{u}_{Y=-\frac{1}{2}} | u_{Y=\frac{1}{2}} \Big] \equiv \Big[\tilde{u} = -i \tau_2 u^* \mid u\Big] \qquad \text{and}$$

- $m_h < \Lambda_T$ and h-couplings as (to be) measured in experiments, for instance $2C_2\Lambda_T/C_2' \simeq m_f/y_f$ (unitarity) and $m_f \simeq y_f\sqrt{C_2}\Lambda_T$ (plausible, non-trivial)
- flavour changing currents much like in the SM: here no tree level FCNC
- loop effects consistent with precise EW data: contribution of non-SM T-fermions to S-parameter $\sim \frac{1}{M_{T-meson}^2} < \frac{1}{100v_{SM}^2}$, likely > 12 T-fermion doublets allowed in \mathcal{L}^{BSMM}

Conclusions

A mass mechanism for fermions and EW gauge bosons: based on strong interactions, fermion chirality $(\tilde{\chi})$ broken at the UV cutoff scale & an exact symmetry (χ) that once gauged describes EW interactions; changing "universality" paradigm: irrelevant terms control LE physics.

Once combined with experimental info it has interesting implications:

- new strong interaction with RGI scale $\Lambda_T > v_{SM}$ and \sim a few TeV
- new fermions with mass $O(\Lambda_T)$ confined in detectable resonances
- ullet solving the naturalness problem: EW & top mass scale derived from $\Lambda_{\mathcal{T}}$
- composite Higgs boson: a bound state in the WW+ZZ channel
- a low energy (p < 1 TeV) effective action quite similar to the SM (composite Higgs couplings may show small deviations from SM)
- insights on fermion mass hierarchy pattern: $\frac{m_{ au}}{m_t},\,\frac{m_b}{m_t},\,m_{
 u}\simeq 0,\,...$

Backup

Backup slides

Predictivity in models with $\tilde{\chi}$ -breaking & NP mass

Renormalizable model: low energy $\tilde{\chi}_L$ SDE at the point of maximal $\tilde{\chi}$ symmetry:

$$\partial_{\mu} \tilde{J}_{\mu}^{L,i} = 0$$
, (Wigner phase)

$$\partial_{\mu} \tilde{J}_{\mu}^{L,i} = \sum_{f} C_{1,f} \Lambda_{T} \mathcal{D}_{f}^{L,i} + \frac{ig_{W}}{2} C_{2} \Lambda_{T}^{2} \text{tr} \left(U^{\dagger} \left[\frac{\tau^{i}}{2}, W_{\mu} \right] D_{\mu}^{WB} U - \text{h.c.} \right), \quad (\text{NG phase})$$

* RGI of I.h.s. \Rightarrow RGI (& UV-finite) NP $\tilde{\chi}$ -breaking terms on the r.h.s.

$$\text{with} \quad \mathcal{D}_f^{L,i} = [\overline{f_L} \tfrac{\tau^i}{2} \textit{U} f_R - \text{h.c.}] \quad \text{and} \quad \textit{\textbf{C}}_{1,f} = O(\rho_{f,\textit{cr}}^2) \, \alpha_{\text{coup}(f)}^{\textit{n}(f)} [1 + O(\alpha...)]$$

 \star effective masses: $C_{1,f}\Lambda_T \leftrightarrow m_f^{eff}, C_2 g_W^2 \Lambda_T^2 \leftrightarrow (m_W^{eff})^2$

UV cutoff $b^{-1} \rightarrow \infty$ at fixed $M_{\text{Tglueball}}$, M_{proton} , G_F , $\sin^2 \theta_W \leftrightarrow \hat{\alpha}_{T,S,W,Y}$

$$\tilde{\chi}$$
-symmetry $\Rightarrow \sum_{f=1}^{N_{ferm}^{lor}} \rho_{f,cr}^2 (1 + O(\rho_{f,cr}^2)) = O(1)$ entails bounds for the $\rho_{f,cr}$'s

- ightarrow $ho_{Q,cr},\,
 ho_{L,cr}$ control $m_Q^{eff},\,m_L^{eff},\,$ as well as $m_W^{eff},\,m_Z^{eff}$
- ightarrow $ho_{t, cr}$ controls $m_t^{eff}, \dots
 ho_{ au, cr}$ controls $m_{ au}^{eff}, \dots$

Are the $\rho_{f,cr}$'s of the most massive fermions (Q, L, 3rd SM family) of similar size ?

Plausible, if all fermions \in some GUT multiplet & peculiar χ terms for 2nd/1st family