Matching the Quasi Parton Distribution in a Momentum Subtraction Scheme

Yong Zhao Massachusetts Institute of Technology

The 36th Annual International Symposium on Lattice Field Theory
East Lansing, MI, USA 07/22-28, 2018

I. Stewart and Y.Z., PRD97 (2018), 054512

Outline

Renormalization of the quasi-PDF

Matching between RI/MOM quasi-PDF and MSbar
 PDF

O The "ratio scheme"

Procedure of Systematic Calculation

1. Simulation of the quasi PDF n lattice QCD

3. Subtraction of higher twist corrections

$$\tilde{q}_i(x, P^z, \tilde{\mu}) = \int_{-1}^{+1} \frac{dy}{|y|} C_{ij} \left(\frac{x}{y}, \frac{\tilde{\mu}}{P^z} | y P^z \rangle \right) q_j(y, \mu) + \mathcal{O}\left(\frac{M^2}{P_z^2}, \frac{\Lambda_{\text{QCD}}^2}{P_z^2} \right) ,$$

- 2. Renormalization of the lattice quasi PDF, and then taking the continuum limit
- 4. Matching to the MSbar PDF.

Renormalization

The gauge-invariant quark Wilson line operator can be renormalized multiplicatively in the coordinate space:

$$\tilde{O}_{\Gamma}(z) = \overline{\psi}(z) \Gamma W(z,0) \psi(0) = Z_{\psi,z} e^{-\delta m|z|} \left(\overline{\psi}(z) \Gamma W(z,0) \psi(0) \right)^{R}$$

X. Ji, J.-H. Zhang, and Y.Z., 2017; J. Green, K. Jansen, and F. Steffens, 2017; T. Ishikawa, Y.-Q. Ma, J. Qiu, S. Yoshida, 2017.

O Different renormalization schemes can be converted to each other in coordinate space;

$$\tilde{Q}^{X}(\zeta,z^{2}\mu_{R}^{2}) = \frac{Z_{\overline{MS}}(\varepsilon,\mu)}{Z_{X}(\varepsilon,z^{2}\mu_{R}^{2})}\tilde{Q}^{\overline{MS}}(\zeta,z^{2}\mu^{2}) = Z'_{X}(z^{2}\mu_{R}^{2},\frac{\mu_{R}}{\mu})\tilde{Q}^{\overline{MS}}(\zeta,z^{2}\mu^{2})$$

Regulator independence

If we apply the same renormalization scheme in both lattice and continuum theories,

$$\tilde{O}_{\Gamma}^{R}(z,\mu) = Z_{X}^{-1}(z,\varepsilon,\mu)\tilde{O}_{\Gamma}(z,\varepsilon)$$

$$= \lim_{a \to 0} Z_{X}^{-1}(z,a^{-1},\mu)\tilde{O}_{\Gamma}(z,a^{-1})$$

- O This should apply to all renormalization schemes;
- After renormalization, we just need to calculate the matching coefficient in dimensional regularization;
- O However, not all schemes can be implemented nonperturbatively on the lattice.

A momentum subtraction scheme

Martinelli et al., 1994

Regulator-independent momentum subtraction scheme (RI/MOM):

$$Z_{OM}^{-1}(z,a^{-1},p_R^z,\mu_R) \langle p | \tilde{O}_{\Gamma}(z,a^{-1}) | p \rangle \Big|_{\substack{p^2 = \mu_R^2 \\ p^z = p_R^z}} = \langle p | \tilde{O}_{\Gamma}(z) | p \rangle_{\text{tree}}$$

$$\langle p | \tilde{O}_{\Gamma}(z,a^{-1}) | p \rangle \Big|_{\substack{p^2 = \mu_R^2 \\ p^z = p_R^z}} = \frac{\langle p | \tilde{O}_{\Gamma}(z) | p \rangle \Big|_{\substack{p^2 = \mu_R^2 \\ p^z = p_R^z}}}{\langle p | \tilde{O}_{\Gamma}(z) | p \rangle_{\text{tree}}} = \frac{\langle p | \tilde{O}_{\Gamma}(z) | p \rangle \Big|_{\substack{p^2 = \mu_R^2 \\ p^z = p_R^z}}}{\langle 4p_R^{\Gamma} \zeta \rangle e^{-ip_R^z * z}}$$

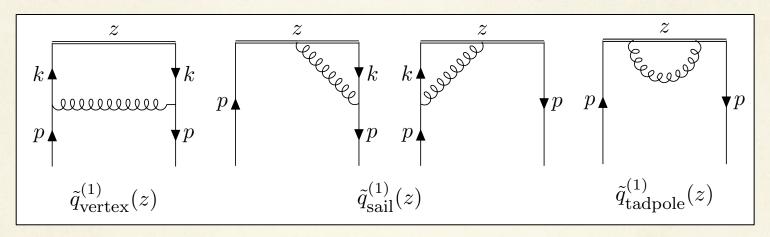
- O Can be implemented nonperturbatively on the lattice.
- O Scales introduced in renormalization: μ_R , p_R^z .

Matching coefficient

Strategy:

- Extracting matching coefficient by comparing the quasi-PDF and light-cone PDF in an off-shell quark state;
- Quark off-shellness $p^2 < 0$ regulates the infrared (IR) and collinear divergences;

One-loop Feynman diagrams



- O Dimensional regularization $d=4-2\varepsilon$;
- $\Gamma = \gamma^z$ for discussion in this talk, $\Gamma = \gamma^t$ case calculated in Y.S. Liu et al. (LP³), arXiv:1807.06566. External momentum $p^{\mu} = (p^0, 0, 0, p^z)$ and $p^2 < 0$;

One-loop results

I. Stewart and YZ, PRD 2018

One-loop bare matrix element:

$$\tilde{q}^{(1)}(z, p^z, 0, -p^2) = \frac{\alpha_s C_F}{2\pi} (4p^z \zeta) \int_{-\infty}^{\infty} dx \left(e^{-ixp^z z} - e^{-ip^z z} \right) h(x, \rho) \qquad \qquad \rho \equiv \frac{(-p^2 - i\varepsilon)}{p_z^2},$$

$$h(x,\rho) \equiv \begin{cases} \frac{1}{\sqrt{1-\rho}} \left[\frac{1+x^2}{1-x} - \frac{\rho}{2(1-x)} \right] \ln \frac{2x-1+\sqrt{1-\rho}}{2x-1-\sqrt{1-\rho}} - \frac{\rho}{4x(x-1)+\rho} + 1 & x > 1 \\ \frac{1}{\sqrt{1-\rho}} \left[\frac{1+x^2}{1-x} - \frac{\rho}{2(1-x)} \right] \ln \frac{1+\sqrt{1-\rho}}{1-\sqrt{1-\rho}} - \frac{2x}{1-x} & 0 < x < 1 \\ \frac{1}{\sqrt{1-\rho}} \left[\frac{1+x^2}{1-x} - \frac{\rho}{2(1-x)} \right] \ln \frac{2x-1-\sqrt{1-\rho}}{2x-1+\sqrt{1-\rho}} + \frac{\rho}{4x(x-1)+\rho} - 1 & x < 0 \end{cases}$$

Formally satisfies vector current conservation (v.c.c.), but:

$$\lim_{|x|\to\infty} h(x,\rho) \sim -\frac{3}{2|x|}, \quad \int_{-\infty}^{\infty} dx \ h(x,\rho) \text{ is logarithmically divergent needs } \varepsilon \text{ to be regularized!}$$

- This logarithmic divergence is what needs to be treated carefully for the MSbar scheme; Izubuchi, Ji, Jin, Stewart and Y.Z., 2018
- Not a problem for the RI/MOM scheme!

RI/MOM renormalization

$$\tilde{q}_{\mathrm{CT}}^{(1)}(z, p^z, p_R^z, \mu_R) = -Z_{\mathrm{OM}}^{(1)}(z, p_R^z, 0, \mu_R) \, \tilde{q}^{(0)}(z, p^z).$$

Renormalization in coordinate space:

$$\tilde{q}_{\text{OM}}^{(1)}(z, p^z, p_R^z, -p^2, \mu_R) = \tilde{q}^{(1)}(z, p^z, 0, -p^2) + \tilde{q}_{\text{CT}}^{(1)}(z, p^z, p_R^z, \mu_R)$$

$$\tilde{q}^{(1)}(z,p^z,0,-p^2) = \frac{\alpha_s C_F}{2\pi} \left(4p^z \zeta\right) \int_{-\infty}^{\infty} \!\! dx \, \left(e^{-ixp^z z} - e^{-ip^z z}\right) h(x,\rho) \qquad \rho = \frac{-p^2}{p_z^2} = \frac{p_z^2 - p_0^2}{p_z^2} < 1 \text{ in Minkowski space}$$

$$\rho = \frac{-p^2}{p_z^2} = \frac{p_z^2 - p_0^2}{p_z^2} < 1$$
 in Minkowski space

$$\tilde{q}_{\mathrm{CT}}^{(1)}(z,p^{z},p_{R}^{z},\mu_{R}) = -\frac{\alpha_{s}C_{F}}{2\pi}\left(4p^{z}\zeta\right)\int_{-\infty}^{\infty}\!\!dx\,\left(e^{i(1-x)p_{R}^{z}z-ip^{z}z}-e^{-ip^{z}z}\right)h(x,r_{R}) - r_{R} = \frac{\mu_{R}^{2}}{(p^{z})^{2}} = \frac{(p_{R}^{4})^{2}+(p_{R}^{z})^{2}}{(p^{z})^{2}} > 1 \text{ for Euclidean momentum,}$$

$$r_R = \frac{\mu_R^2}{(p_R^z)^2} = \frac{(p_R^4)^2 + (p_R^z)^2}{(p_R^z)^2} > 1$$
 for Euclidean momentum analytical continuuation from $\rho < 1$!

Identify the collinear divergence: onshell limit!

$$\tilde{q}_{\text{OM}}^{(1)}(z, p^z, p_R^z, -p^2 \ll p_z^2, \mu_R) = \tilde{q}^{(1)}(z, p^z, 0, -p^2 \ll p_z^2) + \tilde{q}_{\text{CT}}^{(1)}(z, p^z, p_R^z, \mu_R)$$

$$\tilde{q}^{(1)}(z, p^z, 0, -p^2 \ll p_z^2) = \frac{\alpha_s C_F}{2\pi} (4p^z \zeta) \int_{-\infty}^{\infty} dx \left(e^{-ixp^z z} - e^{-ip^z z} \right) h_0(x, \rho),$$

$$\tilde{q}^{(1)}(z, p^z, 0, -p^2 \ll p_z^2) = \frac{\alpha_s C_F}{2\pi} (4p^z \zeta) \int_{-\infty}^{\infty} dx \left(e^{-ixp^z z} - e^{-ip^z z} \right) h_0(x, \rho), \\
h_0(x, \rho) \equiv \begin{cases}
\frac{1+x^2}{1-x} \ln \frac{x}{x-1} + 1 & x > 1 \\
\frac{1+x^2}{1-x} \ln \frac{4}{\rho} - \frac{2x}{1-x} & 0 < x < 1 \\
\frac{1+x^2}{1-x} \ln \frac{x-1}{x} - 1 & x < 0
\end{cases}$$

Lattice 2018, East Lansing

RI/MOM renormalization

O Fourier transform to obtain the x-dependent quasi-PDF:

$$\begin{split} \tilde{q}_{\mathrm{OM}}^{(1)}(x,p^{z},p_{R}^{z},\mu_{R}) &= \int \frac{dz}{2\pi} \, e^{ixzp^{z}} \, \tilde{q}_{\mathrm{OM}}^{(1)}(z,p^{z},p_{R}^{z},\mu_{R}) & \eta = \frac{p^{z}}{p_{R}^{z}} \\ &= \frac{\alpha_{s}C_{F}}{2\pi} \, (4\zeta) \bigg\{ \int \!\! dy \, \big[\delta(y-x) - \delta(1-x) \big] \big[h_{0}(y,\rho) - h(y,r_{R}) \big] \\ & \qquad \qquad + h(x,r_{R}) - |\eta| \, h \big(1 + \eta(x-1),r_{R} \big) \bigg\} \,, \end{split}$$

One can explicitly check that the RI/MOM quasi-PDF satisfies v.c.c.:

$$\int_{-\infty}^{\infty} dx \ \tilde{q}_{\rm OM}^{(1)}(x, p^z, p_R^z, -p^z, \mu_R) = \frac{\alpha_S C_F}{2\pi} (4\zeta) \left[\int_{-\infty}^{\infty} dx \ h(x, r_R) - \int_{-\infty}^{\infty} dx \ |\eta| h(1 + |\eta|(x - 1), r_R) \right] = 0$$

RI/MOM renormalization

Full result of RI/MOM quasi-PDF: Plus functions with δ -function at x=1

$$\tilde{q}_{\mathrm{OM}}^{(1)}(x, p^{z}, p_{R}^{z}, \mu_{R})$$

$$= \frac{\alpha_{s}C_{F}}{2\pi} (4\zeta) \left\{ \begin{bmatrix} \frac{1+x^{2}}{1-x} \ln \frac{x}{x-1} - \frac{2}{\sqrt{r_{R}-1}} \left[\frac{1+x^{2}}{1-x} - \frac{r_{R}}{2(1-x)} \right] \arctan \frac{\sqrt{r_{R}-1}}{2x-1} + \frac{r_{R}}{4x(x-1)+r_{R}} \right]_{\oplus} x > 1$$

$$= \frac{\alpha_{s}C_{F}}{2\pi} (4\zeta) \left\{ \frac{1+x^{2}}{1-x} \ln \frac{4(p^{z})^{2}}{-p^{2}} - \frac{2}{\sqrt{r_{R}-1}} \left[\frac{1+x^{2}}{1-x} - \frac{r_{R}}{2(1-x)} \right] \arctan \sqrt{r_{R}-1} \right]_{+} 0 < x < 1$$

$$= \frac{1+x^{2}}{1-x} \ln \frac{4(p^{z})^{2}}{-p^{2}} - \frac{2}{\sqrt{r_{R}-1}} \left[\frac{1+x^{2}}{1-x} - \frac{r_{R}}{2(1-x)} \right] \arctan \sqrt{r_{R}-1} - \frac{r_{R}}{4x(x-1)+r_{R}} \right]_{+} 0 < x < 1$$

$$+ \frac{\alpha_{s}C_{F}}{2\pi} (4\zeta) \left\{ h(x,r_{R}) - |\eta| h(1+\eta(x-1),r_{R}) \right\}.$$

O Unregulated divergence in the $\delta(1-x)$ part? No!

$$\lim_{|x|\to\infty} \tilde{q}_{\rm OM}^{(1)}(x,p^z,p_R^z,-p^2,\mu_R) \sim \frac{1}{x^2}, \text{ integrable at infinity, no need to regularize!}$$

$$q^{(1)}(x,\mu) = \frac{\alpha_s C_F}{2\pi} (4\zeta) \left\{ \underbrace{\left(\frac{1+x^2}{1-x} \ln \frac{\mu^2}{-p^2}\right)}_{0} - \frac{1+x^2}{1-x} \ln \left[x(1-x)\right] - (2-x) \right]_{+} \quad 0 < x < 1 \quad x < 0$$

Matching coefficient

O Matching coefficient for isovector quasi-PDF in quark:

$$C^{\text{OM}}\left(\xi, \frac{\mu_R}{p_R^z}, \frac{\mu}{p^z}, \frac{p^z}{p_R^z}\right) - \delta(1-\xi) \qquad \xi = \frac{x}{y}$$

$$= \frac{\alpha_s C_F}{2\pi} \left\{ \begin{bmatrix} \frac{1+\xi^2}{1-\xi} \ln \frac{\xi}{\xi-1} - \frac{2(1+\xi^2) - r_R}{(1-\xi)\sqrt{r_R-1}} \arctan \frac{\sqrt{r_R-1}}{2\xi-1} + \frac{r_R}{4\xi(\xi-1) + r_R} \end{bmatrix}_{\oplus} \qquad \xi > 1$$

$$= \frac{\alpha_s C_F}{2\pi} \left\{ \begin{bmatrix} \frac{1+\xi^2}{1-\xi} \ln \frac{4(p^z)^2}{\mu^2} + \frac{1+\xi^2}{1-\xi} \ln \left[\xi(1-\xi)\right] + (2-\xi) - \frac{2 \arctan \sqrt{r_R-1}}{\sqrt{r_R-1}} \left\{ \frac{1+\xi^2}{1-\xi} - \frac{r_R}{2(1-\xi)} \right\} \right]_{+} \quad 0 < \xi < 1$$

$$\left[\frac{1+\xi^2}{1-\xi} \ln \frac{\xi-1}{\xi} + \frac{2}{\sqrt{r_R-1}} \left[\frac{1+\xi^2}{1-\xi} - \frac{r_R}{2(1-\xi)} \right] \arctan \frac{\sqrt{r_R-1}}{2\xi-1} - \frac{r_R}{4\xi(\xi-1) + r_R} \right]_{\oplus} \qquad \xi < 0$$

$$+ \frac{\alpha_s C_F}{2\pi} \left\{ h(\xi, r_R) - |\eta| h(1+\eta(\xi-1), r_R) \right\},$$

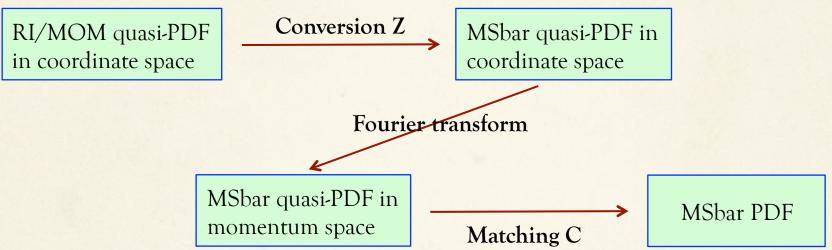
Matching coefficient for isovector nucleon quasi-PDF

$$p^z \rightarrow yP^z, \ \eta = yP^z / p_R^z$$

RI/MOM matching also preserves particle number conservation of the nucleon PDF!

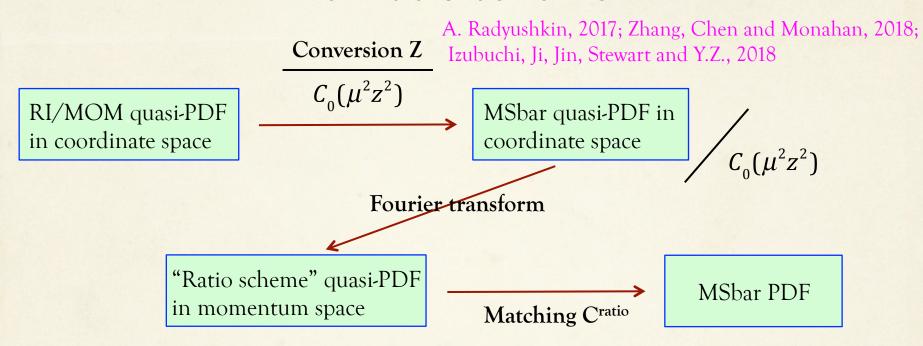
Comparison to the matching procedure by ETMC

M. Constantinou and H. Panagopoulos, 2017 C. Alexandrou et al. (ETMC), 2017, 2018



- MSbar quasi-PDF in coordinate space is logarithmically divergent as $z^2=0$;
- The matching coefficient C does not preserve v.c.c., but it cancels out the above logarithmic divergence to obtain a finite MSbar PDF with v.c.c.;
- Numerically such cancellation of divergences can be tricky!

The "ratio scheme"



- $C_0(\mu^2 z^2)$ is the lowest order Wilson coefficient in the operator product expansion of the quasi-PDF in coordinate space;
- $C_0(\mu^2 z^2)$ cancels the logarithmic divergence in the MSbar quasi-PDF as z^2 =0, and the matching coefficient C^{ratio} preserves v.c.c.;
- Each step is finite, which is friendly to numerical implementation.

The "ratio scheme"

A. Radyushkin, 2017; Zhang, Chen and Monahan, 2018; Izubuchi, Ji, Jin, Stewart and Y.Z., 2018

$$C_0(\mu^2 z^2) = 1 + \frac{\alpha_S C_F}{2\pi} \cdot \left(\frac{3}{2} \ln \frac{\mu^2 z^2 e^{2\gamma_E}}{4} + \frac{5}{2} \right)$$

Different from the one by ETMC (1803.02685) by a finite term

$$C^{\text{ratio}}\left(\xi, \frac{\mu}{yP^z}\right) \sim \frac{1}{\xi^2} ! \left\{ \left(\frac{1+\xi^2}{1-\xi} \ln \frac{\xi}{\xi-1} + 1 - \frac{3}{2(1-\xi)} \right)_{+(1)}^{[1,\infty]} \right. \left. \xi > 1 \right. \\ \left. \left(\frac{1+\xi^2}{1-\xi} \ln \frac{\mu^2}{y^2 P_z^2} + \ln \left(4\xi(1-\xi) \right) - 1 \right] + 1 + \frac{3}{2(1-\xi)} \right)_{+(1)}^{[0,1]} \quad 0 < \xi < 1 \right. \\ \left. \left(-\frac{1+\xi^2}{1-\xi} \ln \frac{-\xi}{1-\xi} - 1 + \frac{3}{2(1-\xi)} \right)_{+(1)}^{[-\infty,0]} \right. \left. \xi > 0 \right.$$

To appear in the updated version of Izubuchi, Ji, Jin, Stewart and Y.Z., 2018

O Moreover, it can be shown that

$$\lim_{p_R^z \to 0} C_{OM} \left(\xi, \frac{\mu_R}{p_R^z}, \frac{\mu}{yP^z}, \frac{yP^z}{p_R^z} \right) = C^{ratio} \left(\xi, \frac{\mu}{yP^z} \right)$$

7/23/18

Summary

- The matching coefficient for the RI/MOM scheme quasi-PDF and MSbar PDF is derived at one-loop order;
- The matching for RI/MOM quasi-PDF preserves vector current conservation;
- The "ratio scheme" can also preserve the vector current conservation, and is equivalent to a special limit of the RI/MOM scheme.

Nonperturbative renormalization on the lattice

For $\Gamma = \gamma^z$, we have to choose $p_R^z \neq 0$; for $\Gamma = \gamma^t$, we can choose $p_R^z = 0$ while $|p^2| >> \Lambda_{\rm QCD}$;

$$Z_{OM}(z,a^{-1},p_z^R,\mu_R) = \langle p | \tilde{O}_{\Gamma}(z) | p \rangle \Big|_{\substack{p^2 = \mu_R^2 \\ p_z = p_z^R}} / (4p_R^{\Gamma} \zeta e^{-ip_R^z * z})$$

- For nonzero p_R^z , Z_{OM} is a complex number, real part symmetric and imaginary part anti-symmetric;
- Operator mixing on the lattice between O_{Γ} and O_1 at $O(a^0)$ (for γ^z) and $O(a^1)$ (for γ^t) due to broken chiral symmetry.

 M. Constantinou and H. Panagopoulos, 2017;
 T. Ishikawa et al. (LP3), 2017.

MSbar treatment

Bare quasi-PDF:

$$\tilde{q}^{(1)}(x, p^z, \epsilon) = \frac{\alpha_s C_F}{2\pi} \left\{ \frac{3}{2} \left(\frac{1}{\epsilon_{\text{UV}}} - \frac{1}{\epsilon_{\text{IR}}} \right) \delta(1 - x) + \frac{\Gamma(\epsilon + \frac{1}{2}) e^{\epsilon \gamma_E}}{\sqrt{\pi}} \frac{\mu^{2\epsilon}}{p_z^{2\epsilon}} \frac{1 - \epsilon}{\epsilon_{\text{IR}} (1 - 2\epsilon)} \right.$$

$$\times \left[|x|^{-1 - 2\epsilon} \left(1 + x + \frac{x}{2} (x - 1 + 2\epsilon) \right) - |1 - x|^{-1 - 2\epsilon} \left(x + \frac{1}{2} (1 - x)^2 \right) + I_3(x) \right] \right\}$$

$$I_3(x) = \theta(x-1) \left(\frac{x^{-1-2\epsilon}}{x-1}\right)_{+(1)}^{[1,\infty]} - \theta(x)\theta(1-x) \left(\frac{x^{-1-2\epsilon}}{1-x}\right)_{+(1)}^{[0,1]} - \delta(1-x)\pi \csc(2\pi\epsilon) + \theta(-x)\frac{|x|^{-1-2\epsilon}}{x-1}$$

¿ expansion:

$$\int_0^\infty \frac{dx}{x^{1+\epsilon}} = \frac{1}{\epsilon_{\rm UV}} - \frac{1}{\epsilon_{\rm IR}} \,.$$

$$\frac{\theta(x)}{x^{1+\epsilon}} = \left[-\frac{1}{\epsilon_{\text{IR}}} \delta(x) + \frac{1}{\epsilon_{\text{UV}}} \frac{1}{x^2} \delta^+ \left(\frac{1}{x} \right) \right] \\ + \left(\frac{1}{x} \right)_{+(0)}^{[0,1]} + \left(\frac{1}{x} \right)_{+(\infty)}^{[1,\infty]} \quad \text{Plus functions with δ-function at } \\ -\epsilon \left[\left(\frac{\ln x}{x} \right)_{+(0)}^{[0,1]} + \left(\frac{\ln x}{x} \right)_{+(\infty)}^{[1,\infty]} \right] + O(\epsilon^2)$$

MSbar treatment

O Renormalized quasi-PDF:

$$\begin{split} \delta \tilde{q}'^{(1)}(x,\mu/|p^z|,\epsilon_{\text{UV}}) &= \frac{\alpha_s C_F}{2\pi} \frac{3}{2\epsilon_{\text{UV}}} \delta(1-x) \,, \\ \tilde{q}'^{(1)}(x,\mu/|p^z|,\epsilon_{\text{IR}}) &= \frac{\alpha_s C_F}{2\pi} \left\{ \begin{array}{l} \left(\frac{1+x^2}{1-x} \ln \frac{x}{x-1} + 1 + \frac{3}{2x}\right)_{+(1)}^{[1,\infty]} - \left(\frac{3}{2x}\right)_{+(\infty)}^{[1,\infty]} & x > 1 \\ \left(\frac{1+x^2}{1-x} \left[-\frac{1}{\epsilon_{\text{IR}}} - \ln \frac{\mu^2}{4p_z^2} + \ln \left(x(1-x)\right) \right] - \frac{x(1+x)}{1-x} \right)_{+(1)}^{[0,1]} & 0 < x < 1 \\ \left(-\frac{1+x^2}{1-x} \ln \frac{-x}{1-x} - 1 + \frac{3}{2(1-x)} \right)_{+(1)}^{[-\infty,0]} - \left(\frac{3}{2(1-x)}\right)_{+(-\infty)}^{[-\infty,0]} & x < 0 \\ + \frac{\alpha_s C_F}{2\pi} \left[\delta(1-x) \left(\frac{3}{2} \ln \frac{\mu^2}{4p_z^2} + \frac{5}{2}\right) + \frac{3}{2} \gamma_E \left(\frac{1}{(x-1)^2} \delta^+(\frac{1}{x-1}) + \frac{1}{(1-x)^2} \delta^+(\frac{1}{1-x})\right) \right] \end{split}$$

O Plus functions with δ-function at $x=\pm\infty$ needed for V.C.C..

Other schemes

Transverse momentum cut-off scheme (Xiong, Ji, Zhang, and Y.Z., 2014):

$$C^{\Lambda_T}\left(\xi,\frac{\mu}{p^z},\frac{\Lambda}{P^z}\right) = \delta(1-\xi)$$
 Linear divergence
$$+\frac{\alpha_s C_F}{2\pi}\left\{ \begin{bmatrix} \frac{1+\xi^2}{1-\xi}\ln\frac{\xi}{\xi-1} + 1 + \frac{1}{(1-\xi)^2}\frac{\Lambda_T}{P^z} \\ \frac{1-\xi^2}{1-\xi}\ln\frac{4(p^z)^2}{\mu^2} + \frac{1+\xi^2}{1-\xi}\ln\xi(1-\xi) + 1 - \frac{2\xi}{1-\xi} + \frac{1}{(1-\xi)^2}\frac{\Lambda_T}{P^z} \\ \frac{1+\xi^2}{1-\xi}\ln\frac{\xi-1}{\xi} - 1 + \frac{1}{(1-\xi)^2}\frac{\Lambda_T}{P^z} \end{bmatrix} \right\} \qquad 0 < \xi < 1$$

MSbar scheme: gives convergent matching integrals (Izubuchi, Ji, Jin, Stewart and Y.Z., 2018)

$$C^{\overline{\rm MS}}\left(\xi,\frac{\mu}{|y|P^{z}}\right) = \delta\left(1-\xi\right) + \frac{\alpha_{s}C_{F}}{2\pi} \begin{cases} \left(\frac{1+\xi^{2}}{1-\xi}\ln\frac{\xi}{\xi-1} + 1 + \frac{3}{2\xi}\right)_{+(1)}^{[1,\infty]} - \frac{3}{2\xi} & \xi > 1 \\ \left(\frac{1+\xi^{2}}{1-\xi}\left[-\ln\frac{\mu^{2}}{y^{2}P_{z}^{2}} + \ln\left(4\xi(1-\xi)\right)\right] - \frac{\xi(1+\xi)}{1-\xi}\right)_{+(1)}^{[0,1]} & 0 < \xi < 1 \\ \left(-\frac{1+\xi^{2}}{1-\xi}\ln\frac{-\xi}{1-\xi} - 1 + \frac{3}{2(1-\xi)}\right)_{+(1)}^{[-\infty,0]} - \frac{3}{2(1-\xi)} & \xi < 0 \end{cases} \\ + \frac{\alpha_{s}C_{F}}{2\pi}\delta(1-\xi)\left(\frac{3}{2}\ln\frac{\mu^{2}}{4y^{2}P_{z}^{2}} + \frac{5}{2}\right). & \text{Plus functions with δ-function at x-} \end{cases}$$

Other schemes

Transverse momentum cut-off scheme (Xiong, Ji, Zhang, and Y.Z., 2014):

Unregulated UV

MSbar scheme: gives convergent matching integrals (Izubuchi, Ji, Jin, Stewart and Y.Z., 2018)

$$C^{\overline{\mathrm{MS}}}\left(\xi,\frac{\mu}{|y|P^{z}}\right) = \delta\left(1-\xi\right) + \frac{\alpha_{s}C_{F}}{2\pi} \left\{ \begin{array}{l} \left(\frac{1+\xi^{2}}{1-\xi}\ln\frac{\xi}{\xi-1} + 1 + \frac{3}{2\xi}\right)_{+(1)}^{[1,\infty]} - \frac{3}{2\xi} & \xi > 1 \\ \left(\frac{1+\xi^{2}}{1-\xi}\left[-\ln\frac{\mu^{2}}{y^{2}P_{z}^{2}} + \ln\left(4\xi(1-\xi)\right)\right] - \frac{\xi(1+\xi)}{1-\xi}\right)_{+(1)}^{[0,1]} & 0 < \xi < 1 \\ \left(-\frac{1+\xi^{2}}{1-\xi}\ln\frac{-\xi}{1-\xi} - 1 + \frac{3}{2(1-\xi)}\right)_{+(1)}^{[-\infty,0]} - \frac{3}{2(1-\xi)} & \xi < 0 \\ + \frac{\alpha_{s}C_{F}}{2\pi}\delta(1-\xi)\left(\frac{3}{2}\ln\frac{\mu^{2}}{4y^{2}P_{z}^{2}} + \frac{5}{2}\right) . \end{array} \right)$$

Numerical results

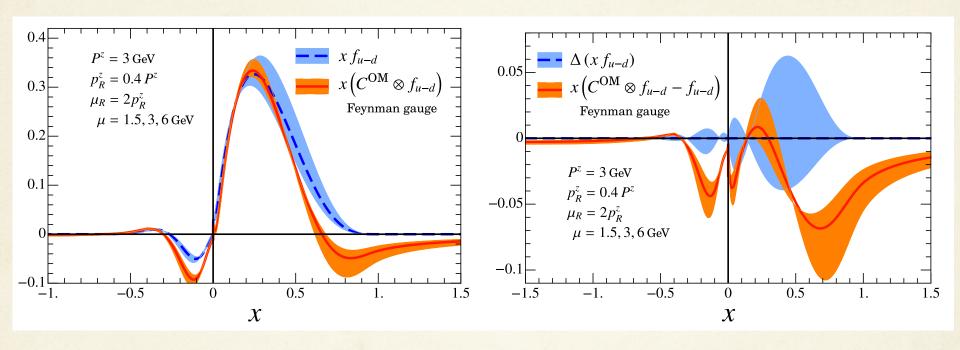
Take the iso-vector parton distribution f_{u-d} as example:

$$f_{u-d}(x,\mu) = f_u(x,\mu) - f_d(x,\mu) - f_{\bar{u}}(-x,\mu) + f_{\bar{d}}(-x,\mu) ,$$

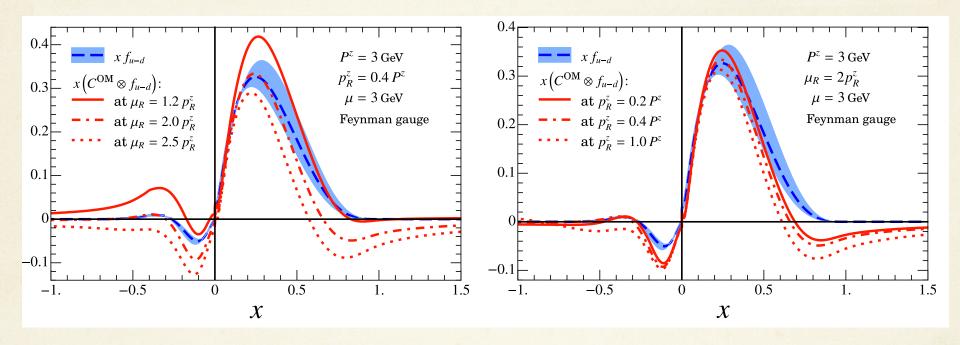
$$f_{\bar{u}}(-x,\mu) = -f_{\bar{u}}(x,\mu) , \qquad f_{\bar{d}}(-x,\mu) = -f_{\bar{d}}(x,\mu) .$$

- O Input:
 - o "MSTW 2008" PDF
 - \circ NLO $\alpha_s(\mu)$

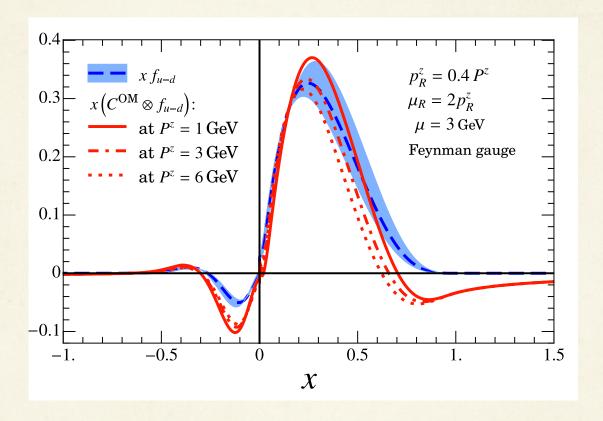
Variation of factorization scale μ



Variation of RI/MOM scales μ_R , p_R^z

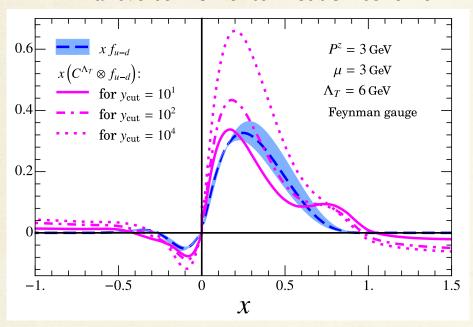


Variation of nucleon momentum P^z

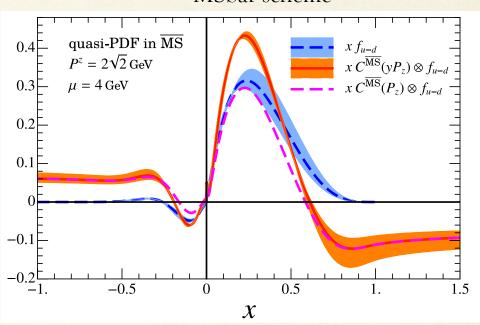


Other schemes

Transverse momentum cut-off scheme



MSbar scheme



Xiong, Ji, Zhang, Zhao, 2014;

Recall unregulated UV divergence when $x/y > \infty$, and $y/x > \infty$, use a hard cut-off $y_{cut} = 10^{\pm n}$.

Izubuchi, Ji, Jin, Stewart and Y.Z., 2018

