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Motivation

Muon aµ and the hadronic vacuum polarisation (HVP)

I experiment: polarized muons in a magnetic field [Bennet et al., Phys.Rev. D73, 072003 (2006)]

aµ = 11659208.9(5.4)(3.3)× 10−10

I Standard Model [PDG]

aµ = 11659180.3(0.1)(4.2)(2.6)× 10−10

I Comparison of theory and experiment: 3.6σ deviation

I largest error on SM estimate from HVP

µ µ

I estimate from e+e− → hadrons [Davier et al., Eur.Phys.J. C71, 1515 (2011)]

(692.3± 4.2± 0.3)× 10−10
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Motivation

HVP from the R-ratio↔ Lattice

ahvpµ · 1010
500 600 700

e+ e− → hadrons

RBC/UKQCD 2018

BMW 2017

HPQCD 2016

ETMC 2013

CLS Mainz 2017

I lattice result to be competitive with R-ratio requires precision of . 1%
→ Isospin Breaking (IB) Corrections

I RBC/UKQCD 2018: HVP at physical point including IB corrections
[C. Lehner, V.G. et al., Phys.Rev.Lett. 121 (2018) 022003]

→ Isospin symmetric HVP [C. Lehner, Friday 14:00]

→ this talk: Isospin Breaking Corrections
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IB corrections on the lattice

IB corrections to lattice calculations

I lattice calculations often done in isospin symmetric limit

I sources of IB corrections
I different masses for up- and down quark (of O((md − mu)/ΛQCD))
I Quarks have electrical charge (of O(α))

→ need to be included in lattice calculations with precision . 1%

Inclusion of IB Effects

I strong IB by using different input quark masses

I stochastic QED using U(1) gauge configurations
[A. Duncan, E. Eichten, H. Thacker, Phys.Rev.Lett. 76, 3894 (1996)]

I Here: Expansion around isospin symmetric calculation
[G.M. de Divitiis et al, JHEP 1204 (2012) 124],[RM123 Collaboration, Phys.Rev. D87, 114505 (2013)]

O = O0 + αOQED +
∑

f

∆mfO∆mf
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IB corrections on the lattice

Expansion around IB symmetric

I perturbative expansion in ∆mf = (m0
f −mf) [G.M. de Divitiis et al, JHEP 1204 (2012) 124]

〈O〉mf
= 〈O〉m0

f
+ ∆mf

∂

∂mf

〈O〉
∣∣∣∣
m0

f

+O
(
∆m2

f

)
S sea quark effects:

quark-disconnected diagrams

I expand the path integral in α [RM123 Collaboration, Phys.Rev. D87, 114505 (2013)]

〈O〉 = 〈O〉e=0 +
1

2
e2 ∂2

∂e2
〈O〉

∣∣∣∣∣
e=0

+O(α2)
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IB corrections on the lattice

Expansion around IB symmetric

I perturbative expansion in ∆mf = (m0
f −mf) [G.M. de Divitiis et al, JHEP 1204 (2012) 124]
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〈O〉 = 〈O〉e=0 +
1

2
e2 ∂2

∂e2
〈O〉
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e=0
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quark-connected

quark-disconnected

unquenched QED
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IB corrections on the lattice

IB corrections to HVP at physical point

I [C. Lehner, V.G. et al., Phys.Rev.Lett. 121 (2018) 022003]

I Nf = 2 + 1 Möbius DWF, 483 × 96 lattice, a−1 = 1.730(4) GeV
[T. Blum et al. Phys.Rev. D93 (2016) no.7, 074505]

I IB corrections from expansion around isospin symmetric calculation

C(t) = C0(t) + αCQED(t) +
∑

f

∆mfC
∆mf (t)

I photon propagator in Feynman gauge, QEDL

∆µν(x− y) = δµν
1

N

∑
k,

#»
k 6=0

eik·(x−y)

k̂2

I photon propagator estimated from stochastic photon field
[D. Giusti et al. Phys.Rev. D95 (2017) 114504]

∆µν(x− y) = 〈Aµ(x)Aν(y)〉
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IB corrections on the lattice

Tuning the quark masses

I isospin symmetric calculation using quark masses determined without QED
[T. Blum et al. Phys.Rev. D93 (2016) no.7, 074505]

I physical quark masses including QED:

→ tune (u,d,s) masses to reproduce experimental π+, K+ and K0 mass (and
check π0 mass)

a mexp
π+ =

[
m0
π+ + αmQED

π+ + ∆md m∆md

π+ + ∆mu m∆mu

π+

]
a mexp

K+ =
[
m0

K+ + αmQED
K+ + ∆mu m∆mu

K+ + ∆ms m∆ms

K+

]
a mexp

K0 =
[
m0

K0 + αmQED
K0 + ∆md m∆md

K0 + ∆ms m∆ms

K0

]
I lattice spacing: fix another mass including QED
→ here: Omega-Baryon

a→ a(∆ms) =
(

m0
Ω + αmQED

Ω + 3 ∆ms m∆ms

Ω

)
/mexp

Ω

→ shift in a smaller then statistical error on lattice spacing
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Results

connected QED corrections to the HVP

I vector two-point function

Cµν(t) =
∑

#»x

〈Jµ(t, #»x )Jν(0)〉

I HVP contribution to aµ [Bernecker and Meyer, Eur.Phys.J. A47, 148 (2011); Feng et al.

Phys.Rev. D88, 034505 (2013)]

aµ =
∑

t

wtCii(t) i = 0, 1, 2

I connected QED correction

−1

0

1

2

3

4

0 5 10 15 20 25

w
tC

ii
(t

)
×

10
1
0

t

QED orretion up
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Results

QED corrections to the HVP

I Ansatz for O(α)-correction to correlator

δC(t) = (c1 + c0t)e−Et

I lowest lying state w/o QED ππ

I lowest lying state with QED πγ
→ QEDL: photon has one unit of momentum

I fit data to ansatz with c0 and c1 as parameters

−1

0

1

2

3

4

0 5 10 15 20

w
tC

ii
(t

)
×

10
1
0

t

QED orretion up

�t

aQED,con
µ = 5.9(5.7)× 10−10
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Results

Systematic errors

I aQED,con
µ = 5.9(5.7)S(1.1)E(0.3)C(1.2)V(0.0)A(0.0)Z × 10−10

ansatz for extrapolation: vary energy between ππ and πγ (1.1)E

discretization error (0.3)C estimated as (aΛ)2 with Λ = 400 MeV

finite volume corrections

repeat calculation using infinite volume photon as estimate→ (1.2)V

∆inf(x) =

π∫
−π

d4k

(2π4)

1

k̂2
eikx

study of finite volume effects using scalar QED [J. Harrison, Wed 16:30]

analytical calculation [A. Portelli, J. Bijnens, N. Hermansson Truedsson, T. Janowski, . . .]

most likely negligible

propagate uncertainties from lattice spacing (0.0)A and ZV (0.0)Z
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I study of finite volume effects using scalar QED [J. Harrison, Wed 16:30]

I analytical calculation [A. Portelli, J. Bijnens, N. Hermansson Truedsson, T. Janowski, . . .]

→ most likely negligible

I propagate uncertainties from lattice spacing (0.0)A and ZV (0.0)Z
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Results

leading disconnected QED correction

gluons between the quarks lines no gluons between the quarks lines

→ QED correction to LO HVP → included in NLO HVP

I using data generated for light-by-light project
[T. Blum et al. Phys. Rev. Lett. 118, 022005 (2017)]

I result

aQED, disc
µ = −6.9(2.1)S(1.3)E(0.4)C(0.4)V(0.0)A(0.0)Z × 10−10
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Results

strong Isospin Breaking Corrections to the HVP

−0.01

0

0.01

0.02

0.03

0.04

0 5 10 15 20

C
ii
(t

)

t

mass orretion

I Ansatz
δC(t) = (c1 + c0t)e−Et

I lowest lying state ππ, vary between free and interacting

I result

asIB
µ = 10.6(4.3)S(1.3)E(0.6)C(6.6)V(0.1)A(0.0)Z × 10−10

Vera Gülpers (University of Southampton) Lattice 2018 July 27, 2018 11 / 13



Results

Summary IB corrections to the HVP
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Results

Summary IB corrections to the HVP

I connected aQED, conn
µ = 5.9(5.7)(1.7)× 10−10

I disconnected aQED, disc
µ = −6.9(2.1)(2.7)× 10−10

I at least 1/Nc suppressed→ assign 30% systematic error

I strong IB correction asIB
µ = 10.6(4.3)(6.8)× 10−10

I disconnected sIB SU(3)f and 1/Nc suppressed→ assign 10% error

I unquenched sIB ∆mu ≈ −∆md suppressed
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Conclusions

Conclusions

I Lattice HVP calculation at . 1% requires inclusion of isospin breaking

I we have calculated IB corrections directly at physical point
→ tuned (u, d, s) masses including QED using π+, K+, K0 and Ω for
→ lattice spacing

I connected and one disconnected QED correction, connected strong IB
correction

Outlook

I re-use light-by-light data to [+ M. Bruno]

I increase statistics for connected QED diagrams
I calculate the QED-unquenched diagrams

I second lattice spacing for QED corrections

I strong IB: effects from sea quark mass shift, second lattice spacing

Vera Gülpers (University of Southampton) Lattice 2018 July 27, 2018 13 / 13



Conclusions

Conclusions

I Lattice HVP calculation at . 1% requires inclusion of isospin breaking

I we have calculated IB corrections directly at physical point
→ tuned (u, d, s) masses including QED using π+, K+, K0 and Ω for
→ lattice spacing

I connected and one disconnected QED correction, connected strong IB
correction

Outlook

I re-use light-by-light data to [+ M. Bruno]

I increase statistics for connected QED diagrams
I calculate the QED-unquenched diagrams

I second lattice spacing for QED corrections

I strong IB: effects from sea quark mass shift, second lattice spacing

Vera Gülpers (University of Southampton) Lattice 2018 July 27, 2018 13 / 13



Backup

Backup
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Backup

Results HVP window method - total

see [C. Lehner, V.G. et al., Phys.Rev.Lett. 121 (2018) 022003]

-25
-20
-15
-10
-5
 0
 5

 10
 15

0.5 1 1.5 2 2.5

´ 
10

-1
0

t1 / fm

aµ, SIBaµ, QEDaµ, uds, disc, isospinaµ, c, conn, isospinaµ, s, conn, isospin / 3
aµ, ud, conn, isospin / 40

42

4

a ud, conn, isospin
µ 202.9(1.4)S(0.2)C(0.1)V(0.2)A(0.2)Z 649.7(14.2)S(2.8)C(3.7)V(1.5)A(0.4)Z(0.1)E48(0.1)E64

a s, conn, isospin
µ 27.0(0.2)S(0.0)C(0.1)A(0.0)Z 53.2(0.4)S(0.0)C(0.3)A(0.0)Z

a c, conn, isospin
µ 3.0(0.0)S(0.1)C(0.0)Z(0.0)M 14.3(0.0)S(0.7)C(0.1)Z(0.0)M

a uds, disc, isospin
µ �1.0(0.1)S(0.0)C(0.0)V(0.0)A(0.0)Z �11.2(3.3)S(0.4)V(2.3)L

a QED, conn
µ 0.2(0.2)S(0.0)C(0.0)V(0.0)A(0.0)Z(0.0)E 5.9(5.7)S(0.3)C(1.2)V(0.0)A(0.0)Z(1.1)E

a QED, disc
µ �0.2(0.1)S(0.0)C(0.0)V(0.0)A(0.0)Z(0.0)E �6.9(2.1)S(0.4)C(1.4)V(0.0)A(0.0)Z(1.3)E

a SIB
µ 0.1(0.2)S(0.0)C(0.2)V(0.0)A(0.0)Z(0.0)E48 10.6(4.3)S(0.6)C(6.6)V(0.1)A(0.0)Z(1.3)E48

a udsc, isospin
µ 231.9(1.4)S(0.2)C(0.1)V(0.3)A(0.2)Z(0.0)M 705.9(14.6)S(2.9)C(3.7)V(1.8)A(0.4)Z(2.3)L(0.1)E48

(0.1)E64(0.0)M
a QED, SIB

µ 0.1(0.3)S(0.0)C(0.2)V(0.0)A(0.0)Z(0.0)E(0.0)E48 9.5(7.4)S(0.7)C(6.9)V(0.1)A(0.0)Z(1.7)E(1.3)E48

a R�ratio
µ 460.4(0.7)RST(2.1)RSY

aµ 692.5(1.4)S(0.2)C(0.2)V(0.3)A(0.2)Z(0.0)E(0.0)E48 715.4(16.3)S(3.0)C(7.8)V(1.9)A(0.4)Z(1.7)E(2.3)L
(0.0)b(0.1)c(0.0)S(0.0)Q(0.0)M(0.7)RST(2.1)RSY (1.5)E48(0.1)E64(0.3)b(0.2)c(1.1)S(0.3)Q(0.0)M

TABLE I. Individual and summed contributions to aµ multiplied by 1010. The left column lists results for the window method
with t0 = 0.4 fm and t1 = 1 fm. The right column shows results for the pure first-principles lattice calculation. The respective
uncertainties are defined in the main text.

We furthermore propagate uncertainties of the lattice
spacing (A) and the renormalization factors ZV (Z). For
the quark-disconnected contribution we adopt the addi-
tional long-distance error discussed in Ref. [29] (L) and
for the charm contribution we propagate uncertainties
from the global fit procedure [22] (M). Systematic errors
of the R-ratio computation are taken from Ref. [1] and
quoted as (RSY). The neglected bottom quark (b) and
charm sea quark (c) contributions as well as e↵ects of
neglected QED (Q) and SIB (S) diagrams are estimated
as described in the previous section.

For the QED and SIB corrections, we assume domi-

nance of the low-lying ⇡⇡ and ⇡� states and fit C
(1)
QED(t)

as well as C
(1)
�mf

(t) to (c1 + c0t)e
�Et, where we vary c0

and c1 for fixed energy E. The resulting p-values are
larger than 0.2 for all cases and we use this functional
form to compute the respective contribution to aµ. For
the QED correction, we vary the energy E between the
lowest ⇡⇡ and ⇡� energies and quote the di↵erence as ad-
ditional uncertainty (E). For the SIB correction, we take
E to be the ⇡⇡ ground-state energy.

For the light quark contribution of our pure lattice re-
sult we use a bounding method [37] similar to Ref. [38]
and find that upper and lower bounds meet within errors
at t = 3.0 fm. We vary the ground-state energy that en-
ters this method [39] between the free-field and interact-
ing value [40]. For the 48I ensemble we find Efree

0 = 527.3
MeV, E0 = 517.4 MeV + O(1/L6) and for the 64I en-
semble we have Efree

0 = 536.1 MeV, E0 = 525.1 MeV
+ O(1/L6). We quote the respective uncertainties as
(E48) and (E64). The variation of ⇡⇡ ground-state en-
ergy on the 48I ensemble also enters the SIB correction
as described above.

Figure 5 shows our results for the window method with
t0 = 0.4 fm. While the partial lattice and R-ratio contri-
butions change by several 100 ⇥ 10�10, the sum changes
only at the level of quoted uncertainties. This provides
a non-trivial consistency check between the lattice and
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FIG. 5. We show results for the window method with t0 = 0.4
fm as a function of t1. The top panel shows the combined
aµ, the middle panel shows the partial contributions of the
lattice and R-ratio data, and the bottom shows the respective
uncertainties.

the R-ratio data for length scales between 0.4 fm and
2.6 fm. We expand on this check in the supplementary
material. The uncertainty of the current analysis is min-
imal for t1 = 1 fm, which we take as our main result
for the window method. For t0 = t1 we reproduce the
value of Ref. [1]. In Fig. 6, we show the t1-dependence
of individual lattice contributions and compare our re-
sults with previously published results in Fig. 7. Our
combined lattice and R-ratio result is more precise than
the R-ratio computation by itself and reduces the ten-
sion to the other R-ratio results. Results for di↵erent
window parameters t0 and t1 and a comparison of indi-
vidual components with previously published results are
provided as supplementary material.
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Backup

Window Method

I combining lattice with R-ratio data [RBC/UKQCD, Phys.Rev.Lett. 121 (2018) 022003]

I very short and long distances from R-ratio, intermediate distances from lattice

aµ = aSD
µ + aW

µ + aLD
µ

aSD
µ =

∑
t

wtC(t)[1− θ(t, t0,∆)]

aW
µ =

∑
t

wtC(t)[θ(t, t0,∆)− θ(t, t1,∆)]

aLD
µ =

∑
t

wtC(t) θ(t, t1,∆)
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Backup

Window Contribution for QED corrections

I combining lattice with R-ratio data
→ window method [RBC/UKQCD, Phys.Rev.Lett. 121 (2018) 022003],[C. Lehner, Friday 14:00]

I very short and long distances from R-ratio, intermediate distances from lattice

aµ = aSD
µ + aW

µ + aLD
µ aW

µ =
∑

t

wtC(t)[θ(t, t0,∆)− θ(t, t1,∆)]

θ(t, t′,∆) = (1 + tanh [(t− t′)/∆])/2

I window contribution from QED corrections
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I t0 = 0.4 fm

I t1 = 1.0 fm

I ∆ = 0.15 fm

I aW,QED
µ = 0.2(0.2)× 10−10
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Backup

Ansatz for IB correlator

I generic two-point function w/o QED

C0(t) = A0e−m0t

I generic two-point function with QED (up to all orders)

C(t) = Ae−mt

I expand

C(t) = Ae−mt = (A0 + αδA)e−(m0+αδm)t = (A0 + αδA)e−m0t(1− δmt)

I perturbative method: O(α) correction to correlator

δC(t) = A0e−m0t

(
δA

A0

− δmt

)
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Backup

Results quark masses tuning

I isospin symmetric calculation [T. Blum et al. Phys.Rev. D93 (2016) no.7, 074505]

am` = 0.0006979(81) ams = 0.03580(16)

I tune (u,d,s) masses to reproduce experimental π+, K+ and K0 mass (and
check π0 mass), fix lattice spacing using Ω−

∆mu = 0.00050(1) ∆md = −0.00050(1) ∆ms = −0.0002(2)

I ratio of quark masses
md

mu

= 0.449(22)

I pion mass difference
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Backup

Disconnected QED correction to HVP - position space sampling

I position space sampling [L. Jin et al., PRD93, 014503 (2016)]

I Disconnected QED correction

r

t

I sampling of position of

I point-to-all propagators

I short distances: sample all possible pairs

I long distances: sample points stochastically using some probability
distribution

I exact photon propagator
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Backup

stochastic method

I Feynman gauge

SFeyn
γ [A] = −

a4

2

∑
x

∑
µ

Aµ(x)∂2Aµ(x) with ∂2 =
∑
µ

∂∗µ∂µ

I in momentum space

SFeyn
γ [A] =

1

2N

∑
k,

#»
k 6=0

k̂2
∑
µ

∣∣∣Ãµ(k)
∣∣∣2 k̂µ =

2

a
sin

(
akµ

2

)

I remove all spatial zero modes→ QEDL
[ S. Uno and M. Hayakawa, Prog. Theor. Phys. 120, 413 (2008)]

I draw Ãµ(k) from Gaussian distribution with variance 2N/k̂2

I electro quenched approximation

I multiply SU(3) gauge links with U(1) photon fields

Uµ(x)→ eieAµ(x)Uµ(x)
I remove O(e) noise by averaging over +e and −e

I QED correction to all orders in α

Vera Gülpers (University of Southampton) Lattice 2018 July 27, 2018 21 / 13



Backup

aµ: Experiment vs. Theory

I aµ = (gµ − 2)/2

I measured and calculated very precisely −→ test of the Standard Model

I experiment: polarized muons in a magnetic field [Bennet et al., Phys.Rev. D73, 072003 (2006)]

aµ = 11659208.9(5.4)(3.3)× 10−10

I Standard Model

em (11658471.895± 0.008)× 10−10
[Kinoshita et al., Phys.Rev.Lett. 109, 111808 (2012)]

weak (15.36± 0.10)× 10−10
[Gnendinger et al., Phys.Rev. D88, 053005 (2013)]

HVP (692.3± 4.2± 0.3)× 10−10
[Davier et al., Eur.Phys.J. C71, 1515 (2011)]

HVP(α3) (−9.84± 0.06)× 10−10
[Hagiwara et al., J.Phys. G38, 085003 (2011)]

LbL (10.5± 2.6)× 10−10
[Prades et al.,Adv.Ser.Direct.High Energy Phys. 20, 303 (2009)]

I Comparison of theory and experiment: 3.6σ deviation

∆aµ = aexp
µ − aSM

µ = 28.8(6.3)Exp(4.9)SM × 10−10

I new physics?
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