Isospin breaking corrections to the HVP at the physical point

Vera Gülpers

School of Physics and Astronomy University of Southampton

July 27, 2018

[RBC/UKQCD, Phys.Rev.Lett. 121 (2018) 022003]

Southampton

RBC/UKQCD Collaboration

BNL and BNL/RBRC

Yasumichi Aoki (KEK) Mattia Bruno Taku Izubuchi Yong-Chull Jang Chulwoo Jung Christoph Lehner Meifeng Lin Aaron Meyer Hiroshi Ohki Shigemi Ohta (KEK) Amarjit Soni

UC Boulder

Oliver Witzel

Columbia University

Ziyuan Bai Norman Christ Duo Guo Christopher Kelly Bob Mawhinney Masaaki Tomii Jiqun Tu Bigeng Wang Tianle Wang Evan Wickenden Yidi Zhao

University of Connecticut

Tom Blum Dan Hoying (BNL) Luchang Jin (RBRC) Cheng Tu

Edinburgh University

Peter Boyle Guido Cossu Luigi Del Debbio Tadeusz Janowski Richard Kenway Julia Kettle Fionn Ó hÓgáin Brian Pendleton Antonin Portelli Tobias Tsang Azusa Yamaguchi

KEK

Julien Frison

University of Liverpool

Nicolas Garron

MIT

David Murphy

Peking University

Xu Feng

University of Southampton

Jonathan Flynn Vera Gülpers James Harrison Andreas Jüttner James Richings Chris Sachrajda

Stony Brook University

Jun-Sik Yoo Sergey Syritsyn (RBRC)

York University (Toronto)

Renwick Hudspith

RBC/UKQCD Collaboration

BNL and BNL/RBRC

Yasumichi Aoki (KEK) Mattia Bruno Taku Izubuchi Yong-Chull Jang Chulwoo Jung Christoph Lehner Meifeng Lin Aaron Meyer Hiroshi Ohki Shigemi Ohta (KEK) Amarjit Soni

UC Boulder

Oliver Witzel

Columbia University

Ziyuan Bai Norman Christ Duo Guo Christopher Kelly Bob Mawhinney Masaaki Tomii Jiqun Tu Bigeng Wang Tianle Wang Evan Wickenden Yidi Zhao

University of Connecticut

Tom Blum Dan Hoying (BNL) Luchang Jin (RBRC) Cheng Tu

Edinburgh University

Peter Boyle Guido Cossu Luigi Del Debbio Tadeusz Janowski Richard Kenway Julia Kettle Fionn Ó hÓgáin Brian Pendleton Antonin Portelli Tobias Tsang Azusa Yamaguchi

KEK

Julien Frison

University of Liverpool

Nicolas Garron

MIT

David Murphy

Peking University

Xu Feng

University of Southampton

Jonathan Flynn Vera Gülpers James Harrison Andreas Jüttner James Richings Chris Sachrajda

Stony Brook University

Jun-Sik Yoo Sergey Syritsyn (RBRC)

York University (Toronto)

Renwick Hudspith

Muon \mathbf{a}_{μ} and the hadronic vacuum polarisation (HVP)

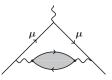
experiment: polarized muons in a magnetic field [Bennet et al., Phys.Rev. D73, 072003 (2006)]

$$a_{\mu} = 11659208.9(5.4)(3.3) imes 10^{-10}$$

Standard Model [PDG]

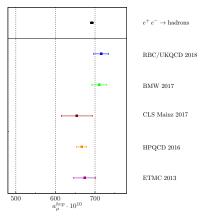
$$a_{\mu} = 11659180.3(0.1)(4.2)(2.6) imes 10^{-10}$$

- \blacktriangleright Comparison of theory and experiment: ${f 3.6\sigma}$ deviation
- largest error on SM estimate from HVP



▶ estimate from e^+e^- → hadrons [Davier et al., Eur.Phys.J. C71, 1515 (2011)] (692.3 ± 4.2 ± 0.3) × 10⁻¹⁰

HVP from the **R**-ratio \leftrightarrow Lattice



- \blacktriangleright lattice result to be competitive with R-ratio requires precision of $\lesssim 1\%$ \rightarrow Isospin Breaking (IB) Corrections
- RBC/UKQCD 2018: HVP at physical point including IB corrections [C. Lehner, V.G. et al., Phys.Rev.Lett. 121 (2018) 022003]
 - \rightarrow Isospin symmetric HVP [C. Lehner, Friday 14:00]
 - $\rightarrow\,$ this talk: Isospin Breaking Corrections

IB corrections to lattice calculations

- lattice calculations often done in isospin symmetric limit
- sources of IB corrections
 - different masses for up- and down quark (of $\mathcal{O}((m_d m_u)/\Lambda_{QCD}))$
 - Quarks have electrical charge (of $\mathcal{O}(\alpha)$)
 - \rightarrow need to be included in lattice calculations with precision $\lesssim 1\%$

Inclusion of IB Effects

- strong IB by using different input quark masses
- stochastic QED using U(1) gauge configurations
 [A. Duncan, E. Eichten, H. Thacker, Phys.Rev.Lett. 76, 3894 (1996)]
- Here: Expansion around isospin symmetric calculation
 [G.M. de Divitiis et al, JHEP 1204 (2012) 124], [RM123 Collaboration, Phys.Rev. D87, 114505 (2013)]

$$\mathcal{O} = \mathcal{O}^{0} + \alpha \mathcal{O}^{\text{QED}} + \sum_{f} \Delta m_{f} \mathcal{O}^{\Delta m_{f}}$$

Expansion around IB symmetric

 \blacktriangleright perturbative expansion in $\Delta m_f = (m_f^0 - m_f)$ [G.M. de Divitiis et al, JHEP 1204 (2012) 124]

$$\left\langle \mathbf{0} \right\rangle_{m_{f}} = \left\langle \mathbf{0} \right\rangle_{m_{f}^{0}} + \Delta m_{f} \left. \frac{\partial}{\partial m_{f}} \left\langle \mathbf{0} \right\rangle \right|_{m_{f}^{0}} + \mathcal{O}\left(\Delta m_{f}^{2}\right)$$

sea quark effects: quark-disconnected diagrams

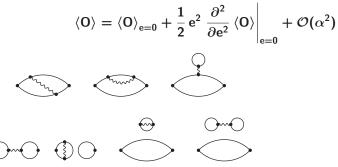
Expansion around IB symmetric

 \blacktriangleright perturbative expansion in $\Delta m_f = (m_f^0 - m_f)$ [G.M. de Divitiis et al, JHEP 1204 (2012) 124]

$$\left\langle 0 \right\rangle_{m_{f}} = \left\langle 0 \right\rangle_{m_{f}^{0}} + \Delta m_{f} \left. \frac{\partial}{\partial m_{f}} \left\langle 0 \right\rangle \right|_{m_{f}^{0}} + \mathcal{O}\left(\Delta m_{f}^{2}\right)$$

sea quark effects: quark-disconnected diagrams

expand the path integral in lpha [RM123 Collaboration, Phys.Rev. D87, 114505 (2013)]



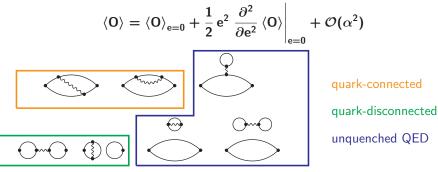
Expansion around IB symmetric

 \blacktriangleright perturbative expansion in $\Delta m_f = (m_f^0 - m_f)$ [G.M. de Divitiis et al, JHEP 1204 (2012) 124]

$$\left\langle 0 \right\rangle_{m_{f}} = \left\langle 0 \right\rangle_{m_{f}^{0}} + \Delta m_{f} \left. \frac{\partial}{\partial m_{f}} \left\langle 0 \right\rangle \right|_{m_{f}^{0}} + \mathcal{O}\left(\Delta m_{f}^{2}\right)$$

sea quark effects: quark-disconnected diagrams

- expand the path integral in lpha [RM123 Collaboration, Phys.Rev. D87, 114505 (2013)]



IB corrections to HVP at physical point

- ▶ [C. Lehner, V.G. et al., Phys.Rev.Lett. 121 (2018) 022003]
- ▶ $N_f = 2 + 1$ Möbius DWF, $48^3 \times 96$ lattice, $a^{-1} = 1.730(4)$ GeV [T. Blum *et al.* Phys.Rev. *D93* (2016) no.7, 074505]
- ► IB corrections from expansion around isospin symmetric calculation $C(t) = C^{0}(t) + \alpha C^{QED}(t) + \sum_{f} \Delta m_{f} C^{\Delta m_{f}}(t)$

photon propagator in Feynman gauge, QED_L

$$\Delta_{\mu\nu}(\mathbf{x} - \mathbf{y}) = \delta_{\mu\nu} \frac{1}{\mathsf{N}} \sum_{\mathbf{k}, \vec{\mathbf{k}} \neq 0} \frac{\mathrm{e}^{\mathrm{i}\mathbf{k} \cdot (\mathbf{x} - \mathbf{y})}}{\hat{\mathbf{k}}^2}$$

 photon propagator estimated from stochastic photon field [D. Giusti et al. Phys.Rev. D95 (2017) 114504]

$$\Delta_{\mu
u}(x-y)=\langle \mathsf{A}_{\mu}(x)\mathsf{A}_{
u}(y)
angle$$

Tuning the quark masses

- isospin symmetric calculation using quark masses determined without QED [T. Blum et al. Phys.Rev. D93 (2016) no.7, 074505]
- physical quark masses including QED:
- \rightarrow tune (u,d,s) masses to reproduce experimental $\pi^+,\, {\rm K}^+$ and ${\rm K}_0$ mass (and check π^0 mass)

$$\begin{split} a \, m_{\pi^+}^{\text{exp}} &= \left[m_{\pi^+}^0 + \alpha m_{\pi^+}^{\text{QED}} + \Delta m_d \ m_{\pi^+}^{\Delta m_d} + \Delta m_u \ m_{\pi^+}^{\Delta m_u} \right] \\ a \, m_{K^+}^{\text{exp}} &= \left[m_{K^+}^0 + \alpha m_{K^+}^{\text{QED}} + \Delta m_u \ m_{K^+}^{\Delta m_u} + \Delta m_s \ m_{K^+}^{\Delta m_s} \right] \\ a \, m_{K^0}^{\text{exp}} &= \left[m_{K^0}^0 + \alpha m_{K^0}^{\text{QED}} + \Delta m_d \ m_{K^0}^{\Delta m_d} + \Delta m_s \ m_{K^0}^{\Delta m_s} \right] \end{split}$$

► lattice spacing: fix another mass including QED → here: Omega-Baryon

$$\mathbf{a} \rightarrow \mathbf{a}(\mathbf{\Delta}\mathbf{m}_{s}) = \left(\mathbf{m}_{\Omega}^{0} + \alpha \mathbf{m}_{\Omega}^{\mathsf{QED}} + 3\,\mathbf{\Delta}\mathbf{m}_{s}\,\,\mathbf{m}_{\Omega}^{\mathbf{\Delta}\mathbf{m}_{s}}\right)/\mathbf{m}_{\Omega}^{\mathsf{exp}}$$

 \rightarrow shift in a smaller then statistical error on lattice spacing

connected QED corrections to the HVP

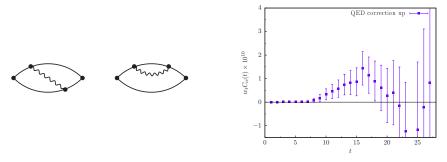
vector two-point function

$$\mathsf{C}_{\mu
u}(\mathsf{t}) = \sum_{ec{\mathsf{x}}} \left\langle \mathsf{J}_{\mu}(\mathsf{t},ec{\mathsf{x}}) \mathsf{J}_{
u}(\mathbf{0})
ight
angle$$

 HVP contribution to a_μ [Bernecker and Meyer, Eur.Phys.J. A47, 148 (2011); Feng *et al.* Phys.Rev. D88, 034505 (2013)]

$$a_{\mu} = \sum_{t} w_t C_{ii}(t)$$
 $i = 0, 1, 2$

connected QED correction

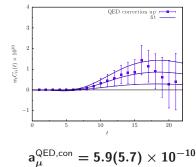


QED corrections to the HVP

• Ansatz for $\mathcal{O}(\alpha)$ -correction to correlator

$$\delta C(t) = (c_1 + c_0 t)e^{-Et}$$

- Iowest lying state w/o QED $\pi\pi$
- Iowest lying state with QED πγ
 → QED_L: photon has one unit of momentum
- \blacktriangleright fit data to ansatz with c_0 and c_1 as parameters



Systematic errors

•
$$a_{\mu}^{\text{QED,con}} = 5.9(5.7)_{\text{S}}$$

$$imes$$
 10⁻¹⁰

Systematic errors

►
$$a_{\mu}^{\text{QED,con}} = 5.9(5.7)_{\text{S}}(1.1)_{\text{E}}$$
 × 10⁻¹⁰

 \blacktriangleright ansatz for extrapolation: vary energy between $\pi\pi$ and $\pi\gamma$ (1.1)_E

Systematic errors

►
$$a_{\mu}^{\text{QED,con}} = 5.9(5.7)_{\text{S}}(1.1)_{\text{E}}(0.3)_{\text{C}}$$
 ×

- ansatz for extrapolation: vary energy between $\pi\pi$ and $\pi\gamma$ $(1.1)_{\mathsf{E}}$
- discretization error (0.3)_C estimated as $(a\Lambda)^2$ with $\Lambda = 400$ MeV

 10^{-10}

Systematic errors

•
$$a_{\mu}^{\text{QED,con}} = 5.9(5.7)_{\text{S}}(1.1)_{\text{E}}(0.3)_{\text{C}}(1.2)_{\text{V}} \times 10^{-10}$$

- ▶ ansatz for extrapolation: vary energy between $\pi\pi$ and $\pi\gamma$ (1.1)_E
- discretization error $(0.3)_{C}$ estimated as $(a\Lambda)^{2}$ with $\Lambda = 400$ MeV

1

- finite volume corrections
 - \blacktriangleright repeat calculation using infinite volume photon as estimate \rightarrow $(1.2)_{V}$

$$\Delta^{inf}(x) = \int_{-\pi}^{\pi} \frac{\mathrm{d}^4 k}{(2\pi^4)} \frac{1}{\hat{k}^2} \mathrm{e}^{\mathrm{i}kx}$$

- study of finite volume effects using scalar QED [J. Harrison, Wed 16:30]
- analytical calculation [A. Portelli, J. Bijnens, N. Hermansson Truedsson, T. Janowski, ...]
- \rightarrow most likely negligible

Systematic errors

►
$$a_{\mu}^{\text{QED,con}} = 5.9(5.7)_{\text{S}}(1.1)_{\text{E}}(0.3)_{\text{C}}(1.2)_{\text{V}}(0.0)_{\text{A}}(0.0)_{\text{Z}} \times 10^{-10}$$

- ▶ ansatz for extrapolation: vary energy between $\pi\pi$ and $\pi\gamma$ (1.1)_E
- discretization error $(0.3)_{C}$ estimated as $(a\Lambda)^{2}$ with $\Lambda = 400$ MeV
- finite volume corrections
 - \blacktriangleright repeat calculation using infinite volume photon as estimate \rightarrow $(1.2)_{V}$

$$\Delta^{\inf}(\mathsf{x}) = \int_{-\pi}^{\pi} \frac{\mathrm{d}^4 \mathsf{k}}{(2\pi^4)} \frac{1}{\hat{\mathsf{k}}^2} \mathrm{e}^{\mathsf{i}\mathsf{k}\mathsf{x}}$$

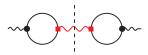
- study of finite volume effects using scalar QED [J. Harrison, Wed 16:30]
- analytical calculation [A. Portelli, J. Bijnens, N. Hermansson Truedsson, T. Janowski, ...]
- \rightarrow most likely negligible
- \blacktriangleright propagate uncertainties from lattice spacing (0.0)_A and Z_V (0.0)_Z

leading disconnected QED correction

gluons between the quarks lines

 \rightarrow QED correction to LO HVP

no gluons between the quarks lines



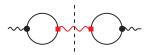
 \rightarrow included in NLO HVP

leading disconnected QED correction

gluons between the quarks lines

 \rightarrow QED correction to LO HVP

no gluons between the quarks lines



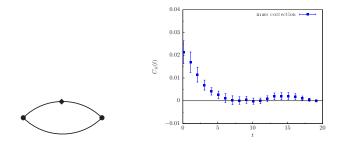
 \rightarrow included in NLO HVP

 using data generated for light-by-light project [T. Blum et al. Phys. Rev. Lett. 118, 022005 (2017)]

result

 $a_{\mu}^{\text{QED, disc}} = -6.9(2.1)_{\text{S}}(1.3)_{\text{E}}(0.4)_{\text{C}}(0.4)_{\text{V}}(0.0)_{\text{A}}(0.0)_{\text{Z}} imes 10^{-10}$

strong Isospin Breaking Corrections to the HVP



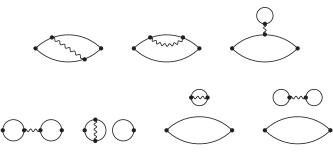
Ansatz

$$\delta \mathsf{C}(\mathsf{t}) = (\mathsf{c}_1 + \mathsf{c}_0 \mathsf{t}) \mathrm{e}^{-\mathsf{E}\mathsf{t}}$$

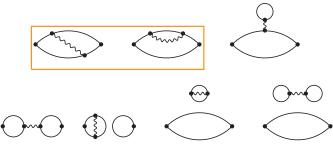
- lowest lying state $\pi\pi$, vary between free and interacting
- result

$${\sf a}_{\mu}^{
m sIB}=10.6(4.3)_{
m S}(1.3)_{
m E}(0.6)_{
m C}(6.6)_{
m V}(0.1)_{
m A}(0.0)_{
m Z} imes 10^{-10}$$

Summary IB corrections to the HVP

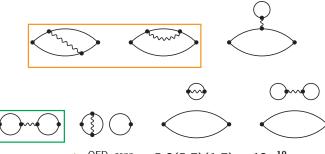


Summary IB corrections to the HVP



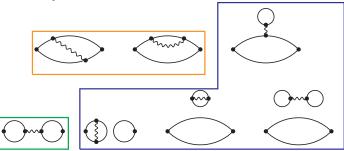
• connected $a_{\mu}^{\text{QED, conn}} = 5.9(5.7)(1.7) \times 10^{-10}$

Summary IB corrections to the HVP

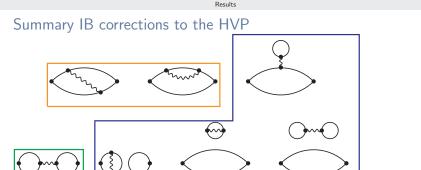


- connected $a_{\mu}^{\text{QED, conn}} = 5.9(5.7)(1.7) \times 10^{-10}$
- disconnected $a_{\mu}^{\text{QED, disc}} = -6.9(2.1)(2.7) \times 10^{-10}$

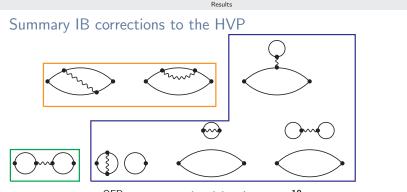
Summary IB corrections to the HVP



- connected $a_{\mu}^{\text{QED, conn}} = 5.9(5.7)(1.7) \times 10^{-10}$
- disconnected $a_{\mu}^{ ext{QED, disc}} = -6.9(2.1)(2.7) imes 10^{-10}$
- \blacktriangleright at least $^{1}\!/N_{c}$ suppressed \rightarrow assign 30% systematic error

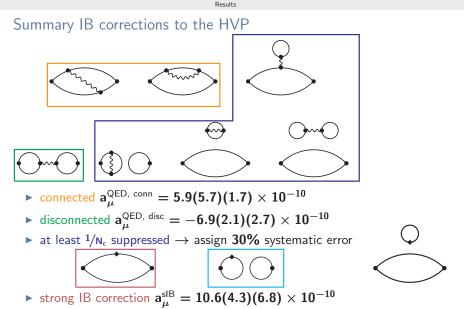


- connected $a_{\mu}^{\text{QED, conn}} = 5.9(5.7)(1.7) \times 10^{-10}$
- ▶ disconnected $a_{\mu}^{\text{QED, disc}} = -6.9(2.1)(2.7) \times 10^{-10}$
- \blacktriangleright at least $^{1}\!/n_{c}$ suppressed \rightarrow assign 30% systematic error



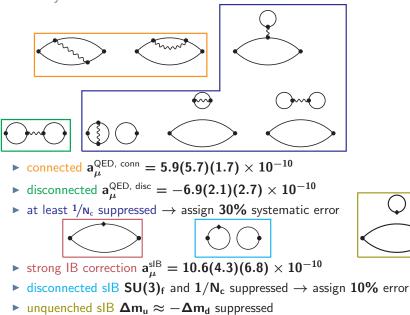
- connected $a_{\mu}^{\text{QED, conn}} = 5.9(5.7)(1.7) \times 10^{-10}$
- ▶ disconnected $a_{\mu}^{\text{QED, disc}} = -6.9(2.1)(2.7) imes 10^{-10}$
- \blacktriangleright at least $^1\!/\!n_{\rm c}$ suppressed \rightarrow assign 30% systematic error

▶ strong IB correction $a_{\mu}^{sIB} = 10.6(4.3)(6.8) \times 10^{-10}$



▶ disconnected sIB SU(3)_f and $1/N_c$ suppressed → assign 10% error

Summary IB corrections to the HVP



Conclusions

Conclusions

- \blacktriangleright Lattice HVP calculation at $\lesssim 1\%$ requires inclusion of isospin breaking
- we have calculated IB corrections directly at physical point
 - \rightarrow tuned $(u,\,d,\,s)$ masses including QED using $\pi^+,\,\mathsf{K}^+,\,\mathsf{K}^0$ and Ω for lattice spacing
- connected and one disconnected QED correction, connected strong IB correction

Conclusions

Conclusions

- \blacktriangleright Lattice HVP calculation at $\lesssim 1\%$ requires inclusion of isospin breaking
- we have calculated IB corrections directly at physical point
 - \rightarrow tuned $(u,\,d,\,s)$ masses including QED using $\pi^+,\,\mathsf{K}^+,\,\mathsf{K}^0$ and Ω for lattice spacing
- connected and one disconnected QED correction, connected strong IB correction

Outlook

- re-use light-by-light data to [+ M. Bruno]
 - increase statistics for connected QED diagrams
 - calculate the QED-unquenched diagrams
- second lattice spacing for QED corrections
- strong IB: effects from sea quark mass shift, second lattice spacing

Backup

Results HVP window method - total

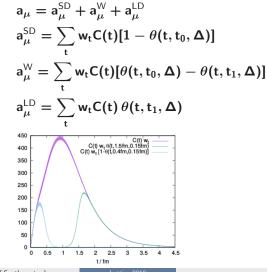
see [C. Lehner, V.G. et al., Phys.Rev.Lett. 121 (2018) 022003]

$a_{\mu}^{\text{ud, conn, isospin}}$	$202.9(1.4)_{\rm S}(0.2)_{\rm C}(0.1)_{\rm V}(0.2)_{\rm A}(0.2)_{\rm Z}$	$649.7(14.2)_{S}(2.8)_{C}(3.7)_{V}(1.5)_{A}(0.4)_{Z}(0.1)_{E48}(0.1)_{E64}$
a s, conn, isospin	$27.0(0.2)_{\rm S}(0.0)_{\rm C}(0.1)_{\rm A}(0.0)_{\rm Z}$	$53.2(0.4)_{\rm S}(0.0)_{\rm C}(0.3)_{\rm A}(0.0)_{\rm Z}$
$a_{\mu}^{c, \text{ conn, isospin}}$	$3.0(0.0)_{\rm S}(0.1)_{\rm C}(0.0)_{\rm Z}(0.0)_{\rm M}$	$14.3(0.0)_{\rm S}(0.7)_{\rm C}(0.1)_{\rm Z}(0.0)_{\rm M}$
$a_{\mu}^{\text{uds, disc, isospin}}$	$-1.0(0.1)_{\rm S}(0.0)_{\rm C}(0.0)_{\rm V}(0.0)_{\rm A}(0.0)_{\rm Z}$	$-11.2(3.3)_{\rm S}(0.4)_{\rm V}(2.3)_{\rm L}$
$a_{\mu}^{\text{QED, conn}}$	$0.2(0.2)_{\rm S}(0.0)_{\rm C}(0.0)_{\rm V}(0.0)_{\rm A}(0.0)_{\rm Z}(0.0)_{\rm E}$	$5.9(5.7)_{\rm S}(0.3)_{\rm C}(1.2)_{\rm V}(0.0)_{\rm A}(0.0)_{\rm Z}(1.1)_{\rm E}$
$a_{\mu}^{\text{QED, disc}}$	$-0.2(0.1)_{\rm S}(0.0)_{\rm C}(0.0)_{\rm V}(0.0)_{\rm A}(0.0)_{\rm Z}(0.0)_{\rm E}$	$-6.9(2.1)_{\rm S}(0.4)_{\rm C}(1.4)_{\rm V}(0.0)_{\rm A}(0.0)_{\rm Z}(1.3)_{\rm E}$
$a_{\mu}^{\text{uds, disc, isospin}}$ $a_{\mu}^{\text{QED, conn}}$ $a_{\mu}^{\text{QED, disc}}$ a_{μ}^{SIB}	$0.1(0.2)_{\rm S}(0.0)_{\rm C}(0.2)_{\rm V}(0.0)_{\rm A}(0.0)_{\rm Z}(0.0)_{\rm E48}$	$10.6(4.3)_{\rm S}(0.6)_{\rm C}(6.6)_{\rm V}(0.1)_{\rm A}(0.0)_{\rm Z}(1.3)_{\rm E48}$
$\frac{a_{\mu}}{a_{\mu}}$ udsc, isospin	$231.9(1.4)_{\rm S}(0.2)_{\rm C}(0.1)_{\rm V}(0.3)_{\rm A}(0.2)_{\rm Z}(0.0)_{\rm M}$	$705.9(14.6)_{S}(2.9)_{C}(3.7)_{V}(1.8)_{A}(0.4)_{Z}(2.3)_{L}(0.1)_{E48}$
		$(0.1)_{E64}(0.0)_{M}$
$a_{\mu}^{\text{QED, SIB}}$	$0.1(0.3)_{\rm S}(0.0)_{\rm C}(0.2)_{\rm V}(0.0)_{\rm A}(0.0)_{\rm Z}(0.0)_{\rm E}(0.0)_{\rm E48}$	$9.5(7.4)_{\rm S}(0.7)_{\rm C}(6.9)_{\rm V}(0.1)_{\rm A}(0.0)_{\rm Z}(1.7)_{\rm E}(1.3)_{\rm E48}$
$a_{\mu}^{\text{QED, SIB}}$ $a_{\mu}^{\text{R-ratio}}$	$460.4(0.7)_{RST}(2.1)_{RSY}$	
a_{μ}	$692.5(1.4)_{\rm S}(0.2)_{\rm C}(0.2)_{\rm V}(0.3)_{\rm A}(0.2)_{\rm Z}(0.0)_{\rm E}(0.0)_{\rm E48}$	$715.4(16.3)_{\rm S}(3.0)_{\rm C}(7.8)_{\rm V}(1.9)_{\rm A}(0.4)_{\rm Z}(1.7)_{\rm E}(2.3)_{\rm L}$
	$(0.0)_{\rm b}(0.1)_{\rm c}(0.0)_{\overline{\rm S}}(0.0)_{\overline{\rm Q}}(0.0)_{\rm M}(0.7)_{\rm RST}(2.1)_{\rm RSY}$	$(1.5)_{E48}(0.1)_{E64}(0.3)_{b}(0.2)_{c}(1.1)_{\overline{S}}(0.3)_{\overline{Q}}(0.0)_{M}$

TABLE I. Individual and summed contributions to a_{μ} multiplied by 10¹⁰. The left column lists results for the window method with $t_0 = 0.4$ fm and $t_1 = 1$ fm. The right column shows results for the pure first-principles lattice calculation. The respective uncertainties are defined in the main text.

Window Method

- combining lattice with R-ratio data [RBC/UKQCD, Phys.Rev.Lett. 121 (2018) 022003]
- \blacktriangleright very short and long distances from R-ratio, intermediate distances from lattice



Window Contribution for QED corrections

combining lattice with R-ratio data

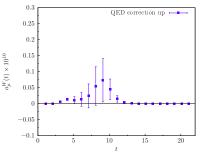
 \rightarrow window method [RBC/UKQCD, Phys.Rev.Lett. 121 (2018) 022003],[C. Lehner, Friday 14:00]

 \blacktriangleright very short and long distances from R-ratio, intermediate distances from lattice

$$\mathbf{a}_{\mu} = \mathbf{a}_{\mu}^{\text{SD}} + \mathbf{a}_{\mu}^{\text{W}} + \mathbf{a}_{\mu}^{\text{LD}}$$
 $\mathbf{a}_{\mu}^{\text{W}} = \sum_{t} \mathbf{w}_{t} \mathbf{C}(t) [\theta(t, t_{0}, \Delta) - \theta(t, t_{1}, \Delta)]$

$$\theta(t,t',\Delta) = (1 + \tanh{[(t-t')/\Delta]})/2$$

window contribution from QED corrections



▶ $t_0 = 0.4$ fm

•
$$a_{\mu}^{W,QED} = 0.2(0.2) imes 10^{-10}$$

Ansatz for IB correlator

▶ generic two-point function w/o QED

$$\mathsf{C}_0(\mathsf{t}) = \mathsf{A}_0 \mathsf{e}^{-\mathsf{m}_0 \mathsf{t}}$$

generic two-point function with QED (up to all orders)

$$C(t) = Ae^{-mt}$$

expand

(

$$C(t) = Ae^{-mt} = (A_0 + \alpha \delta A)e^{-(m_0 + \alpha \delta m)t} = (A_0 + \alpha \delta A)e^{-m_0 t}(1 - \delta m t)$$

• perturbative method: $\mathcal{O}(\alpha)$ correction to correlator

$$\delta \mathsf{C}(\mathsf{t}) = \mathsf{A}_0 \mathsf{e}^{-\mathsf{m}_0 \mathsf{t}} \left(\frac{\delta \mathsf{A}}{\mathsf{A}_0} - \delta \mathsf{m} \mathsf{t} \right)$$

Results quark masses tuning

▶ isospin symmetric calculation [T. Blum et al. Phys.Rev. D93 (2016) no.7, 074505]

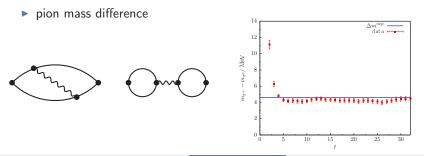
$$am_{\ell} = 0.0006979(81)$$
 $am_s = 0.03580(16)$

▶ tune (**u**,**d**,**s**) masses to reproduce experimental π^+ , **K**⁺ and **K**₀ mass (and check π^0 mass), fix lattice spacing using Ω^-

 $\Delta m_u = 0.00050(1)$ $\Delta m_d = -0.00050(1)$ $\Delta m_s = -0.0002(2)$

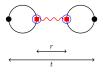
ratio of quark masses

$$\frac{m_{d}}{m_{u}} = 0.449(22)$$



Disconnected QED correction to HVP - position space sampling

- position space sampling [L. Jin et al., PRD93, 014503 (2016)]
- Disconnected QED correction



- \blacktriangleright sampling of position of \bigcirc
- point-to-all propagators
- short distances: sample all possible pairs
- long distances: sample points stochastically using some probability distribution
- exact photon propagator

stochastic method

Feynman gauge

$$\mathsf{S}^{\mathsf{Feyn}}_{\gamma}[\mathsf{A}] = -\frac{\mathsf{a}^4}{2} \sum_{\mathsf{x}} \sum_{\mu} \mathsf{A}_{\mu}(\mathsf{x}) \partial^2 \mathsf{A}_{\mu}(\mathsf{x}) \quad \text{ with } \quad \partial^2 = \sum_{\mu} \partial^*_{\mu} \partial_{\mu}$$

in momentum space

$$\mathbf{S}_{\gamma}^{\text{Feyn}}[\mathbf{A}] = \frac{1}{2N} \sum_{\mathbf{k}, \vec{\mathbf{k}} \neq 0} \hat{\mathbf{k}}^2 \sum_{\mu} \left| \tilde{\mathbf{A}}_{\mu}(\mathbf{k}) \right|^2 \qquad \quad \hat{\mathbf{k}}_{\mu} = \frac{2}{a} \sin\left(\frac{a\mathbf{k}_{\mu}}{2}\right)$$

- ▶ remove all spatial zero modes → QED_L [S. Uno and M. Hayakawa, Prog. Theor. Phys. 120, 413 (2008)]
- draw $\tilde{A}_{\mu}(\mathbf{k})$ from Gaussian distribution with variance $2N/\hat{k}^2$
- electro quenched approximation
- multiply SU(3) gauge links with U(1) photon fields

$$\mathsf{U}_{\mu}(\mathsf{x}) \to \mathrm{e}^{\mathrm{i}\mathsf{e}\mathsf{A}_{\mu}(\mathsf{x})}\mathsf{U}_{\mu}(\mathsf{x})$$

- ▶ remove O(e) noise by averaging over +e and -e
- QED correction to all orders in lpha

\mathbf{a}_{μ} : Experiment vs. Theory

•
$$a_{\mu} = (g_{\mu} - 2)/2$$

 \blacktriangleright measured and calculated very precisely —> test of the Standard Model

experiment: polarized muons in a magnetic field [Bennet et al., Phys.Rev. D73, 072003 (2006)]

$${
m a}_{\mu}=11659208.9(5.4)(3.3) imes 10^{-10}$$

Standard Model

 $\begin{array}{ll} \mbox{em} & (11658471.895 \pm 0.008) \times 10^{-10} & \mbox{[Kinoshita et al., Phys.Rev. Lett. 109, 11808 (2012)]} \\ \mbox{weak} & (15.36 \pm 0.10) \times 10^{-10} & \mbox{[Genedinger et al., Phys.Rev. D88, 053005 (2013)]} \\ \mbox{HVP} & (692.3 \pm 4.2 \pm 0.3) \times 10^{-10} & \mbox{[Davier et al., Eur.Phys.J. C71, 1515 (2011)]} \\ \mbox{HVP} & (692.3 \pm 4.2 \pm 0.06) \times 10^{-10} & \mbox{[LbL} & (10.5 \pm 2.6) \times 10^{-10} & \mbox{[Hagiwara et al., Adv.Ser.Direct.High Energy Phys. 20, 303 (2009)]} \\ \end{array}$

• Comparison of theory and experiment: 3.6σ deviation

$$\Delta a_{\mu} = a_{\mu}^{ ext{exp}} - a_{\mu}^{ ext{SM}} = 28.8(6.3)^{ ext{Exp}}(4.9)^{ ext{SM}} imes 10^{-10}$$

new physics?