

Towards a Dual Representation of Lattice QCD

G. Gagliardi, W. Unger

Universität Bielefeld

Lattice 2018, East Lansing

Universität Bielefeld

G. Gagliardi, W. Unger

Dual representation of LQCE

Lattice 2018, East Lans

. / 15

Motivation for Strong Coupling QCD

- Strong coupling expansion is a Taylor expansion in the lattice gauge coupling $\beta = \frac{2N_c}{\sigma^2}$.
- At $\beta = 0$ the gauge d.o.f. can be integrated out analytically giving rise to a dual formulation.
- Average complex phase $\langle e^{i\phi} \rangle_{pq} = e^{-rac{V}{T}(f_{pq}-f)}$ close to one.

 \implies sign problem is mild and phase diagram can be mapped out.

$$Z_{sc} = \int [dU] \int d\chi \bar{\chi} e^{-(S_g + S_f)}$$

Sign problem is representation dependent!

G. Gagliardi, W. Unger

Lattice 2018, East Lans

2 / 15

Strong Coupling QCD and dual representation.

- Dual representation: rewriting the partition function in terms of new degrees of freedom (dual variables). At β = 0 just color singlets [mesons & baryons] ⇒ MDP formulation [Wolff & Rossi, 1984].
- *β* corrections to strong coupling needed to decrease the lattice spacing. Plaquette excitations produce world sheets bounded by quark fluxes:

• Caveat: Dual representation does not solve, per sè, the sign problem.

• **Goal:** Find a representation where the gluon dynamics does not reintroduce a *sign problem*.

First step: Find a dual, sign problem free, formulation for pure Yang-Mills theory valid for all β .

G. Gagliardi, W. Unger

Dual representation of LQCE

Overview of the available dual formulations

Pure Yang-Mills theory:

- Alternative formulation for *SU*(3) using Hubbard Stratonovich transformation: [H. Vairinhos & P. De Forcrand '14]
- Plaquette expansion for pure Yang-Mills SU(2) gauge theory: [Leme, Oliveira,Krein '17]

Dual formulations with matter fields:

- Nuclear Physics from lattice QCD at strong coupling: [P. De Forcrand & M. Fromm '09]
- Dual lattice simulation of the U(1) gauge-Higgs model at finite density: [Mercado, Gattringer, Schmidt '13]
- Dual simulation of the massless lattice Schwinger model with topological term and non-zero chemical potential: [Göschl '17]
- Abelian color cycles (ACC): [Gattringer & Marchis '17]
- Dual U(N) LGT with staggered fermions: [Borisenko et al '17]

Strong coupling expansion

A new strategy:

$$\mathcal{Z}_{YM} = \int_{SU(N)} [dU] e^{\frac{\beta}{2N_c} \sum_{\rho} \left[\operatorname{Tr} U_{\rho} + \operatorname{Tr} U_{\rho}^{\dagger} \right]}$$

• **Taylor expand** the action in terms of plaquette(anti-plaquette) occupation numbers {*n_p*, *n_p*}:

$$\mathcal{Z}_{YM} = \sum_{\{n_p, \bar{n}_p\}} \frac{(\beta/2N_c)^{\sum_p n_p + \bar{n}_p}}{\prod_p n_p! \bar{n}_p!} \underbrace{\prod_{\ell} \prod_p \int_{SU(N)} dU_\ell \left(\operatorname{Tr} U_p\right)^{n_p} \left(\operatorname{Tr} U_p^{\dagger}\right)^{\bar{n}_p}}_{W(\{\mathbf{n}_p, \bar{\mathbf{n}}_p\})}$$

• **Plaquette constraint:** For each link $\ell = (x, \mu)$:

$$\sum_{\nu>\mu} \underbrace{\delta n_{x,\mu,\nu} - \delta n_{x-\nu,\mu,\nu}}_{\delta n_{p} = n_{p} - \bar{n}_{p}} = \begin{cases} 0 \ \mathbb{U}(\mathbb{N}) \\ 0 \ mod \ N \ \mathbb{SU}(\mathbb{N}) \end{cases}$$
$$\underbrace{d_{\ell=(x,\mu)}}_{\Sigma_{\nu>\mu}} := \min \begin{cases} \sum_{\nu>\mu} n_{x,\mu,\nu} + \bar{n}_{x-\nu,\mu,\nu} \\ \sum_{\nu>\mu} \bar{n}_{x,\mu,\nu} + n_{x-\nu,\mu,\nu} \end{cases}$$

(2,1) (2,1) (2,1)

G. Gagliardi, W. Unger

Link Integration

How to compute the $W(\{n_p, \bar{n}_p\})$?

• The following quantities are needed:

$$\mathcal{I}^{a,b}_{_{i^{j}k^{\ell}}} = \int_{SU(N_{c})} dU U^{j_{1}}_{i_{1}} ... U^{j_{a}}_{i_{a}} (U^{\dagger})^{\ell_{1}}_{k_{1}} ... (U^{\dagger})^{\ell_{b}}_{k_{b}} \qquad | a - b | = q \cdot N_{c}$$

• Cases q = 0 and q = 1 addressed: [Collins '03,'06, Zuber '17].

• We extended their results by computing the generating functional:

$$Z^{a,b}[K, J] = \int_{SU(N)} dU[\operatorname{Tr}(UK)]^{a} [\operatorname{Tr}(U^{\dagger}J)]^{b}$$

$$\stackrel{n=\min\{a,b\}}{=} (qN_{c}+n)! \prod_{i=0}^{N_{c}-1} \frac{i!}{(i+q)!} (\det K)^{q} \sum_{\rho \vdash n} \tilde{W}^{n,q}_{g}(\rho, N_{c}) t_{\rho}(JK)$$

$$\tilde{W}^{n,q}_{g}(\rho, N_{c}) = \sum_{\substack{\lambda \vdash n \\ \ell(\lambda) \leq N_{c}}} \frac{1}{(n!)^{2}} \frac{d_{\lambda}^{2} \chi^{\lambda}(\rho)}{D_{\lambda,N_{c}+q}}, \quad t_{\rho}(A) = \prod_{\rho_{i}} \operatorname{Tr}(A^{\rho_{i}})$$

Link Integration

 $Z^{a,b}[K, J]$ expressed as a sum over integer partitions weighted by the modified Weingarten functions \tilde{W}_g .

- Group theoretical factors enter the expression for $\tilde{W}_{g}^{n,q}$: $d_{\lambda}, D_{\lambda,N}$ dimensions of irrep λ of S_{n} and $SU(N_{c})$. $\chi^{\lambda}(\rho)$ are the **irreducible** characters of the symmetric group.
- *W̃^{n,q}* take as an argument both N_c and ρ. Conjugacy classes of permutations can also be represented as integer partitions.

$$\tilde{W}_{g}^{n,q}(\rho,N_{c}) = \sum_{\substack{\lambda \vdash n \\ \ell(\lambda) \leq N_{c}}} \frac{1}{(n!)^{2}} \frac{d_{\lambda}^{2} \chi^{\lambda}(\rho)}{D_{\lambda,N_{c}+q}}$$

$$\ell(\lambda) = 4 \begin{cases} \lambda \vdash 9 = (4, 2, 2, 1) \\ \lambda_1 = 4 \\ \lambda_2 = 2 \\ \lambda_3 = 2 \\ \lambda_4 = 1 \end{cases}$$

$$\left(\begin{array}{rrr}1&2&3\\2&1&3\end{array}\right)\cong(12)(3)\cong$$

 $\mathcal{I}^{a,b}$ obtained from $Z^{a,b}[K, J]$ by differentiating in J, K.

Dual form of the partition function: U(N) case

$$\mathcal{I}_{jjk^{\ell}}^{n,n} = \sum_{\sigma,\tau\in\mathcal{S}_n} W_g^n(|\sigma\circ\tau^{-1}|, N_c) \delta_i^{\ell_{\sigma}} \delta_{k_{\tau}}^j \xrightarrow[i_1]{} \mathcal{N}_{i_1}^{m_{x+\mu}} \delta_i^{l_{\sigma}} \delta_{k_{\tau}}^{j_1} \delta_{k_{\tau}}^{j_1} \delta_{k_{\tau}}^{j_1} \delta_{k_{\tau}}^{j_1}$$

For U(N) only the $\mathcal{I}^{a,b}$ with a = b are non-zero. $W(\{n_p, \overline{n}_p\})$ can be evaluated as follows:

- Associate a pair of permutation $(\sigma_{\ell}, \tau_{\ell}) \in S_{d_{\ell}}$ to each **bond**.
- The delta functions δ^{σ} and δ_{τ} contract on each vertex.
- An additional permutation π_{\times} sitting on each vertex tells us how to **re-orient the color flux**:
 - i.e. how to contract the indices between δ 's associated to links that join the same vertex.

$$W(\{n_p,\bar{n}_p\}) = \sum_{\{\sigma_\ell,\tau_\ell\in S_{d_\ell}\}} \prod_{\ell} \underbrace{\mathcal{W}_g^{d_\ell}(|\sigma_\ell\circ\tau_\ell^{-1}|,N_c)}_{\gtrless 0} \underbrace{\prod_{x} \mathcal{N}_c^{\ell(\hat{\sigma}\circ\pi_x)}}_{\text{from delta contraction}}$$

Dual form of the partition function: U(N) case

• **Problems:** Analytic resummation too expensive. Half of the W_g 's are negative. No possibility of reweighting. E.g. :

$$\tilde{W}_{g}^{2,0}(2,N_{c})=rac{-1}{N_{c}(N_{c}^{2}-1)}$$

• Idea: Express the Gauge Integrals in a different basis by introducting a new class of operators $P_{\lambda}^{a,b}$:

$$\mathcal{I}_{i^{j}k^{\ell}}^{n,n} = \sum_{\substack{\lambda \vdash n \\ \ell(\lambda) \le N_{c}}} \frac{1}{D_{\lambda,N_{c}}} \cdot \left(P_{\lambda}^{a,b}\right)_{i}^{\ell} \left(P_{\lambda}^{a,b}\right)_{k}^{j} \qquad P_{\lambda}^{a,b} = \frac{1}{d_{\lambda}} \sum_{\pi \in S_{n}} M_{\lambda}^{a,b}(\pi) \delta_{\pi}$$

- $M_{\lambda}^{a,b}(\pi)$ are the matrix elements of the **irrep**. λ of S_n in the **Young-Yamanouchi** basis.
- $M_\lambda(\pi)$ is an orthogonal matrix for all $\pi\in S_n$.
- Matrix elements computed using computer algebra.

G. Gagliardi, W. Unger

Dual form of the partition function: U(N) case

Properties of the operators $P_{\lambda}^{a,b}$

• Define hermitian product between operators in $(\mathbb{C}^{N_c})^{\otimes n}$:

$$\langle \mathsf{A},\mathsf{B}
angle := \mathrm{Tr}(\mathsf{A}^{\dagger}\mathsf{B}) \implies \langle \delta_{\pi},\delta_{\sigma}
angle = \mathsf{N}_{\mathsf{c}}^{\ell(\sigma\circ\pi^{-1})}$$

• $P_{\lambda}^{a,b}$ is a complete, orthogonal set, with respect to $\langle \cdot \rangle$. We obtain:

$$W(\{n_p, \bar{n}_p\}) = \sum_{\substack{\{\lambda_\ell \vdash d_\ell\}\\\ell(\lambda_\ell) \le N_c}} \left[\sum_{\substack{a_\ell, b_\ell \\ \ell}} \prod_{\ell} \frac{1}{D_{\lambda_\ell, N_c}} \prod_x w(x) \right]$$
$$w(x) = \langle \bigotimes_{\ell \in nb(x)} P_{\lambda_\ell}^{a_\ell, b_\ell}, \delta_{\pi_x} \rangle$$

Advantages: Quantity in brackets is positive and much faster to compute \implies allows for importance sampling. Orthogonality helps us understanding which configurations have non zero weight. Extension to SU(N) easier in this orthogonal basis.

Prospects for MC simulation

Our new degrees of freedom are $\{n_p, \bar{n}_p\}$ and integer partitions $\lambda_{\ell} \vdash d_{\ell}$.

- Different types of updates to ensure ergodicity without violating the plaquette constraint:
- 1) Select a plaquette p' and propose $(n_{p'}, \bar{n}_{p'}) \rightarrow (n_{p'} \pm 1, \bar{n}_{p'} \pm 1)$. Randomly choose new partitions $\lambda'_{\ell'}$ on links $\ell' \in p'$. Accept new configuration with probability:

$$P_{acc} = \min\left\{1, \frac{(\beta/2N_c)^{\pm 2}}{\left[(n_{p'} \pm 1) \cdot (\bar{n}_{p'} \pm 1)\right]^{\pm 1}} \cdot \frac{W\left(\{n_{p} \pm \delta_{p,p'}, \bar{n}_{p} \pm \delta_{p,p'}\}, \{\lambda_{\ell}\}\right)}{W(\{n_{p}, \bar{n}_{p}\}, \{\lambda_{\ell}\})}\right\}$$

2) Select a plaquette **p** and propose $n_p \rightarrow n_p \pm N_c$ or $\bar{n}_p \rightarrow \bar{n}_p \pm N_c$.

3) At fixed $\{n_p, \bar{n}_p\}$ select a random link ℓ' and accept $\lambda_{\ell'} \to \lambda'_{\ell'}$ with probability:

$$P_{acc} = \min\left\{1, \frac{W\left(\{n_{p}, \bar{n}_{p}\}, \{\lambda_{\ell}^{'}\}\right)}{W\left(\{n_{p}, \bar{n}_{p}\}, \{\lambda_{\ell}\}\right)}\right\}$$

4) Propose **cube updates** to change $n_p - \bar{n}_p \mod N_c$.

Summary

• Results:

- We obtained a **fully dualized** partition function for *Yang-Mills* theory. We are able to compute each weight and we checked the correctness of our approach comparing with known results.
- By resumming a subset of weights we obtained **only positive configurations** which are labelled by integer partitions.

• Outlook:

- Implement a Markov Chain Monte Carlo simulation for the dualized partition function. Possible observables: Mean plaquette, glueball and screening masses.
- Extend our approach to matter fields: scalar QCD, staggered fermions.

Backup slides

Average plaquette for pure Yang-Mills in the dual representation and comparison with standard heat bath algorithm for various dimensions:

- Weights computed using **invariants** (valid for $n_p \bar{n}_p \mod N_c = 0$)
- Cube updates still missing.

Observables in the dual representation

Mean plaquette:

$$\left\langle \frac{\operatorname{\mathsf{Re}}\operatorname{Tr} U_{\mu,\nu}(x)}{N_c} \right\rangle \stackrel{\text{dual}}{=} \left\langle \frac{2n_{x,\mu,\nu}}{\beta} \right\rangle$$

 Scalar glueball J^{PC} = 0⁺⁺: Extracted from temporal correlator of spatial plaquettes:

$$C(t) = \langle \psi(t)\psi(0) \rangle - \langle \psi(t) \rangle \langle \psi(0) \rangle$$

$$\psi(t) = \frac{1}{N_c} \sum_{\vec{x}} \sum_{\mu < \nu}^{\mu \neq 0} \operatorname{Re} \operatorname{Tr} U_{\mu,\nu}(\vec{x}, t) \stackrel{\text{dual}}{=} \sum_{\vec{x}} \sum_{\mu < \nu}^{\mu \neq 0} \frac{n_{(\vec{x}, t), \mu, \nu} + \bar{n}_{(\vec{x}, t), \mu, \nu}}{\beta}$$