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Motivation for Strong Coupling QCD

Strong coupling expansion is a Taylor expansion in the lattice gauge
coupling β = 2Nc

g2 .
At β = 0 the gauge d.o.f. can be integrated out analytically giving
rise to a dual formulation.
Average complex phase 〈eiφ〉pq = e−V

T (fpq−f ) close to one.
=⇒ sign problem is mild and phase diagram can be mapped out.
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[W. Unger et al, arXiv:1406.4397].

Zsc =
∫

[dU]
∫

dχχ̄ e−(��Sg +Sf )

Sign problem is repre-
sentation dependent!
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Strong Coupling QCD and dual representation.
Dual representation: rewriting the partition function in terms of new
degrees of freedom (dual variables). At β = 0 just color singlets
[mesons & baryons] =⇒MDP formulation [Wolff & Rossi, 1984].
β corrections to strong coupling needed to decrease the lattice
spacing. Plaquette excitations produce world sheets bounded by
quark fluxes:
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Caveat: Dual representation does not solve,per sè, the sign problem.
Goal: Find a representation where the gluon dynamics does not
reintroduce a sign problem.

First step: Find a dual, sign problem free, formulation for pure
Yang-Mills theory valid for all β.
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Overview of the available dual formulations

Pure Yang-Mills theory:
Alternative formulation for SU(3) using Hubbard Stratonovich
transformation: [H. Vairinhos & P. De Forcrand ’14]

Plaquette expansion for pure Yang-Mills SU(2) gauge theory: [Leme,
Oliveira,Krein ’17]

Dual formulations with matter fields:
Nuclear Physics from lattice QCD at strong coupling: [P. De Forcrand &
M. Fromm ’09]

Dual lattice simulation of the U(1) gauge-Higgs model at finite
density: [Mercado, Gattringer, Schmidt ’13]

Dual simulation of the massless lattice Schwinger model with
topological term and non-zero chemical potential: [Göschl ’17]

Abelian color cycles (ACC): [Gattringer & Marchis ’17]

Dual U(N) LGT with staggered fermions: [Borisenko et al ’17]
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Strong coupling expansion
A new strategy:

ZYM =
∫

SU(N)
[dU]e

β
2Nc

∑
p

[
TrUp+TrU†p

]
Taylor expand the action in terms of plaquette(anti-plaquette)
occupation numbers {np, n̄p}:

ZYM =
∑
{np ,n̄p}

(β/2Nc)
∑

p np+n̄p∏
p np!n̄p!

∏
`

∏
p

∫
SU(N)

dU` (TrUp)np
(
TrU†p

)n̄p

︸ ︷︷ ︸
W({np,n̄p})

Plaquette constraint: For each link ` = (x , µ) :∑
ν>µ

δnx ,µ,ν − δnx−ν,µ,ν︸ ︷︷ ︸
δnp=np−n̄p

=
{

0 U(N)
0 mod N SU(N)

d`=(x ,µ)︸ ︷︷ ︸
dimer number

:= min
{ ∑

ν>µ nx ,µ,ν + n̄x−ν,µ,ν∑
ν>µ n̄x ,µ,ν + nx−ν,µ,ν

}
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Link Integration
How to compute the W ({np, n̄p}) ?

The following quantities are needed:

Ia,b
i j k` =

∫
SU(Nc )

dUU j1
i1 ...U

ja
ia (U†)`1

k1
...(U†)`bkb

| a − b |= q · Nc

Cases q = 0 and q = 1 addressed: [ Collins ’03,’06, Zuber ’17].
We extended their results by computing the generating functional:

Z a,b[K , J ] =
∫

SU(N)
dU
[
Tr(UK )

]a [Tr(U†J)
]b

n=min{a,b}= (qNc + n)!
Nc−1∏
i=0

i!
(i + q)!(det K )q ∑

ρ`n
W̃ n,q

g (ρ,Nc)tρ(JK )

W̃ n,q
g (ρ,Nc) =

∑
λ`n

`(λ)≤Nc

1
(n!)2

d2
λχ

λ(ρ)
Dλ,Nc +q

, tρ(A) =
∏
ρi

Tr(Aρi )
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Link Integration
Z a,b[K , J ] expressed as a sum over integer partitions weighted by the
modified Weingarten functions W̃g .

Group theoretical factors enter the
expression for W̃ n,q

g : dλ,Dλ,N
dimensions of irrep λ of Sn and
SU(Nc). χλ(ρ) are the irreducible
characters of the symmetric group.

W̃ n,q
g take as an argument both Nc

and ρ. Conjugacy classes of
permutations can also be
represented as integer partitions.

W̃ n,q
g (ρ,Nc) =

∑
λ`n

`(λ)≤Nc

1
(n!)2

d2
λχ

λ(ρ)
Dλ,Nc +q

(
1 2 3
2 1 3

)
∼= (12)(3) ∼=

Ia,b obtained from Z a,b[K , J ] by differentiating in J ,K .

G. Gagliardi, W. Unger Dual representation of LQCD Lattice 2018, East Lansing 7 / 15



Dual form of the partition function: U(N) case

In,n
i j k` =

∑
σ,τ∈Sn

W n
g (
∣∣σ ◦ τ−1∣∣,Nc)δ`σi δ

j
kτ

For U(N) only the Ia,b with a = b are non-zero. W ({np, n̄p}) can be
evaluated as follows:

Associate a pair of permutation (σ`, τ`) ∈ Sd` to each bond.
The delta functions δσ and δτ contract on each vertex.
An additional permutation πx sitting on each vertex tells us how to
re-orient the color flux:

i.e. how to contract the indices between δ’s associated to links that
join the same vertex.

W ({np, n̄p}) =
∑

{σ`,τ`∈Sd`}

∏
`

W d`
g (
∣∣σ` ◦ τ−1

`

∣∣,Nc)︸ ︷︷ ︸
≷0

∏
x

N`(σ̂◦πx )
c︸ ︷︷ ︸

from delta contraction
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Dual form of the partition function: U(N) case

Problems: Analytic resummation too expensive. Half of the Wg ’s
are negative. No possibility of reweighting. E.g. :

W̃ 2,0
g (2,Nc) = −1

Nc(N2
c − 1)

Idea: Express the Gauge Integrals in a different basis by introducting
a new class of operators Pa,b

λ :

In,n
i j k` =

∑
λ`n

`(λ)≤Nc

1
Dλ,Nc

·
(

Pa,b
λ

)`
i

(
Pa,b
λ

)j

k
Pa,b
λ = 1

dλ
∑
π∈Sn

Ma,b
λ (π)δπ

Ma,b
λ (π) are the matrix elements of the irrep. λ of Sn in the

Young-Yamanouchi basis.
Mλ(π) is an orthogonal matrix for all π ∈ Sn.
Matrix elements computed using computer algebra.
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Dual form of the partition function: U(N) case
Properties of the operators Pa,b

λ

Define hermitian product between operators in (CNc )⊗n:
〈A,B〉 := Tr(A†B) =⇒ 〈δπ, δσ〉 = N `(σ◦π−1)

c

Pa,b
λ is a complete, orthogonal set, with respect to 〈·〉. We obtain:

W ({np, n̄p}) =
∑

{λ``d`}
`(λ`)≤Nc

W ({np ,n̄p},{λ`})≥0︷ ︸︸ ︷∑
a`,b`

∏
`

1
Dλ`,Nc

∏
x

w(x)


w(x) = 〈

⊗
`∈nb(x) Pa`,b`

λ`
, δπx 〉

Advantages: Quantity in brackets is positive and much faster to compute
=⇒ allows for importance sampling. Orthogonality helps us under-
standing which configurations have non zero weight. Extension to SU(N)
easier in this orthogonal basis.
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Prospects for MC simulation
Our new degrees of freedom are {np, n̄p} and integer partitions λ` ` d`.

Different types of updates to ensure ergodicity without violating the
plaquette constraint:

1) Select a plaquette p′ and propose (np′ , n̄p′ )→ (np′ ± 1, n̄p′ ± 1). Randomly
choose new partitions λ′

`′
on links `′ ∈ p′ . Accept new configuration with

probability:

Pacc = min
{

1, (β/2Nc )±2[
(np′±1)·(n̄p′±1)

]±1 ·
W
(
{np±δp,p′ ,n̄p±δp,p′ },{λ

′
`}
)

W ({np ,n̄p},{λ`})

}
2) Select a plaquette p and propose np → np ± Nc or n̄p → n̄p ± Nc .

3) At fixed {np, n̄p} select a random link `′ and
accept λ`′ → λ

′

`′
with probability:

Pacc = min
{

1,
W
(
{np ,n̄p},{λ

′
`}
)

W ({np ,n̄p},{λ`})

}
4) Propose cube updates to change np − n̄p mod Nc .
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Summary

Results:
We obtained a fully dualized partition function for Yang-Mills theory.
We are able to compute each weight and we checked the correctness
of our approach comparing with known results.
By resumming a subset of weights we obtained only positive
configurations which are labelled by integer partitions.

Outlook:
Implement a Markov Chain Monte Carlo simulation for the dualized
partition function. Possible observables: Mean plaquette, glueball and
screening masses.
Extend our approach to matter fields: scalar QCD, staggered fermions.
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Backup slides
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Average plaquette for pure Yang-Mills in the dual representation and com-
parison with standard heat bath algorithm for various dimensions:

Weights computed using invariants
(
valid for np − n̄p mod Nc = 0

)
Cube updates still missing.
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Observables in the dual representation

Mean plaquette: 〈Re Tr Uµ,ν(x)
Nc

〉
dual=

〈2nx ,µ,ν
β

〉
Scalar glueball JPC = 0++: Extracted from temporal correlator of
spatial plaquettes:

C(t) = 〈ψ(t)ψ(0)〉 − 〈ψ(t)〉〈ψ(0)〉

ψ(t) = 1
Nc

∑
~x

µ 6=0∑
µ<ν

Re Tr Uµ,ν(~x , t) dual=
∑
~x

µ 6=0∑
µ<ν

n(~x ,t),µ,ν + n̄(~x ,t),µ,ν
β
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