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» Free from purely » Variational ansatz based
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Hamiltonian lattice formulation

Lattice Hamiltonian formulation
» Kogut-Susskind staggered fermions in temporal gauge A° = 0
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Hamiltonian lattice formulation

Lattice Hamiltonian formulation

» Kogut-Susskind staggered fermions in temporal gauge A° = 0
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Hamiltonian lattice formulation

Disentangling the gauge field

e Transformation disentangling the gauge degrees of freedom

0= Hexp (/9k Z Qa)

m>k

« Hamiltonian in the rotated frame Hg = ©@HOT
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o Pure Gaussian state @il femo
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Variational ansatz

Time-dependent variational principle

» Compute the evolution of a given initial Gaussian state under
Hg in the manifold of Gaussian states

» Time-dependent variational principle applied to Gaussian
states yields

> Imaginary-time evolution:

diTI'(T) ={I,H(I)} —2r H(")I

> Real-time evolution:
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Results: Schwinger model

Static potential
® Start from the strong-coupling vacuum

® Impose a flux string between static external charges separated
by a length L on top

» Evolve in imaginary time and determine the ground-state
energy Eq(L)

* Measure the static potential V(L) = Eq(L) — Evac
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Results: Schwinger model

Out-of-equilibrium dynamics
» Compute the interacting vacuum of the theory or start on the
strong-coupling vacuum
* Impose a flux string of length L on top

» Evolve in real time and monitor the site resolved average
electric field (L2)

&




Results: Schwinger model

Out-of-equilibrium dynamics

String on top of the interacting vacuum
e=1,m/g=01g=1

< Lp,>
1




Results: Schwinger model

Out-of-equilibrium dynamics

String on top of the interacting vacuum String on top of the strong-coupling vacuum
e=1,m/g=01g=1 e=1,m/g=0.1g=1

= Reliable simulations even in the situation of a global quench
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Static potential
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= Gauge invariant color-neutral state is not a Gaussian state

o Parity symmetries of Hg allow for finding unitary
transformations V4 and V5 which decouple the external charges

Ho(s1,5) = VaViHo V| Vj




Results: SU(2) lattice gauge theory

Static potential

o External charges are described by g7 = %O'a

= Gauge invariant color-neutral state is not a Gaussian state

o Parity symmetries of Hg allow for finding unitary
transformations V4 and V5 which decouple the external charges

Ho(s1,5) = VaViHo V| Vj

* 51,5 € {—1,1}: Eigenvalues of the parity operators in the
rotated frame




Results: SU(2) lattice gauge theory

Static potential
» Analogous to the U(1) case start with the strong-coupling
vacuum
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» Compute the ground state via imaginary time evolution
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Results: SU(2) lattice gauge theory

Out-of-equilibrium dynamics
» Similar to the U(1) case we compute the interacting vacuum

* Impose a string between static external charges on top

Site resolved color flux e =1, m = 0.75, g = 1.52 Correlation function Ca(t) e =1, m=0.75, g = 1.5
<L2> T T T : :
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Conclusion & Outlook

Conclusion

» Ansatz captures the relevant features

» Static properties
» Out-of-equilibrium dynamics

» Good agreement with Tensor Network results

Outlook
« Finite density
» Finite temperature

» Higher dimensions

» Formulation Hg might be useful for other applications

» Tensor Networks
» Quantum simulation




Thank you for your attention!
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A. Variational ansatz for the case of SU(2)

Parity symmetries of the Hamiltonian
o Parity symmetry of Ho: [P1, Ho] =0
with P, = 0703 P, and P, = exp [ig S oh(o? + 11)¢>,,]

» Unitary transformation rotating P; to o

1
—(1- ia{asz),

Vi, =
TR

= In the rotated frame o7 is conserved, classical variable s;
« Parity symmetry of P{HgPy: [P, Pl HoPi] = 0




A. Variational ansatz for the case of SU(2)

Variational ansatz
e Ansatz in the rotated frame

|[¥) = |GS) |s1) |s2)

» Ansatz in the original frame

) =570 (D + 1 [+ 52) 1), + (1 = ) ;]

+5(s1 1), = D) [A+ ) 1), +(1-s2)N),]P:
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