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QCD in the Strong Coupling LimitQCD in the Strong Coupling LimitQCD in the Strong Coupling LimitQCD in the Strong Coupling LimitQCD in the Strong Coupling Limit

Study regime where sign problems can be made mild:
⇒ limit of infinite gauge coupling

g →∞, β = 2Nc

g2 → 0

Problem

[Wolff & Rossi, 1984]

A change of integration order results in SC-partition function for staggered fermions:

ZSC =
∑
{n,k,l}

∏
x

Nc !
nx ! (2amq)nx

︸ ︷︷ ︸
monomers

∏
b=(x,µ)

(Nc − kb)!
Nc !kb! γ2kbδµ0

︸ ︷︷ ︸
mesonic hoppings/dimers

∏
l

w(l , µ)︸ ︷︷ ︸
baryonic hoppings

Fully combinatorial problem, restricted by Grassmann constraint:

nx +
∑
±µ

kxµ = Nc ,
∑
±µ

lxµ = 0, ∀x

In the following restrict to chiral limit where monomer density 〈n〉 = 0
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Continuous Time limit within Strong Coupling QCDContinuous Time limit within Strong Coupling QCDContinuous Time limit within Strong Coupling QCDContinuous Time limit within Strong Coupling QCDContinuous Time limit within Strong Coupling QCD

First: Introduction of anisotropy for continuous temperature variation:

aT = 1
Nτ
⇒ aT = ξ(γ)

Nτ
, ξ(γ) = a/aτ︸ ︷︷ ︸

anisotropy parameter

Second: Gamma dependence of ξ(γ) non trivial: [de Forcrand, Unger & Vairinhos, 2018]

ξ(γ) ≈ κγ2 + γ2

1 + λγ4
, κ = 0.781 for SU(3)

Definition of the Continuous Time Limit as:

Nτ →∞, γ →∞ with ξ(γ)
Nτ

= κγ2

Nτ
= aT fixed

Continuous Time partition function:

ZCT (T ) =
∑
k∈2N

( 1
2aT

) ∑
G′∈Γk

eµBB/T ν̂NT
T

with k =
∑

b=(x ,̂i)

kb, NT =
∑

x

nT (x)
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Benefits and Comments on Continuous Time LimitBenefits and Comments on Continuous Time LimitBenefits and Comments on Continuous Time LimitBenefits and Comments on Continuous Time LimitBenefits and Comments on Continuous Time Limit

• No discretization errors due to finite Nτ
• Only one parameter left (temperature T)
• Baryons become static for Nc ≥ 3 ⇒ no extend in spatial direction
⇒ Sign problem is absent
• Baryons are massive (even though in chiral limit)
• No multiple spatial dimers (suppressed by γ)

• Faster algorithm for medium to large temporal extends
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Continuous Time AlgorithmContinuous Time AlgorithmContinuous Time AlgorithmContinuous Time AlgorithmContinuous Time Algorithm

• Worm-type Monte Carlo Algorithm [Adams & Chandrasekharan, 2003]

• absorption (even) and emission (odd) site decomposition of lattice
Mesonic worm update:
• Place tail of mesonic worm on lattice at absorption site

⇒ Violation of Grassmann constraint ⇒ propagate head

restoration of Grassmann constraint if head at emission site

t
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Weight of configuration ruled by spatial dimer emission/absorption
• spatial dimer emission ruled by Poisson process
• Vertex weights decide spatial dimer absorption

P(∆β) ∼ exp(λ∆β), ∆β ∈ [0, β = 1/aT ]
"decay constant" λ for spatial dimer emission:
λ = dD(x)/4, dM(x) = 2d −

∑
µ

nB(x ± µ̂)
with dM(x) the number of mesonic neighbors
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Two-point CorrelatorsTwo-point CorrelatorsTwo-point CorrelatorsTwo-point CorrelatorsTwo-point Correlators

• Sample monomer-monomer two-point correlation functions

C(tH − tT , ~xH − ~xT ) = C(τ,~x)

• accumulate observables during worm evolution
(tail absorption/source, head emission/sink) C(τ,~x) = Nc

O(C(τ,~x))
#worm updates

• Measure Chiral Susceptibility χσ by summing over worm estimators:

χσ = 1
V
∑
~x

C(τ,~x)

Discrete Time: O(C(τ,~x))→ O(C(τ,~x)) + f (γ) · δxT ,x1δxH ,x2 , τ ∈ [0, . . .Nτ ]

Continuous Time: O(C(τ,~x))→ O(C(τ,~x)) + g(T ) · δxT ,x1δxH ,x2 , τ ∈ [0, . . . 1
T ]
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Extracting Meson MassesExtracting Meson MassesExtracting Meson MassesExtracting Meson MassesExtracting Meson Masses

• Extract pole masses for temporal correlators with zero spatial momentum

E0(~p = 0) = m0, C(τ) =
∑
~x

〈χ̄0χ0χ̄~x,tχ~x,t〉gD
x

• For staggered fermions: Restrict to diagonal of Dirac-taste-kernel (Nf = 1)

gD
x ΓD ⊗ ΓF JPC Physical states

NO O NO O NO O

1 1⊗ 1 γ0γ5 ⊗ (γ0γ5)∗ 0++ 0−+ σS πA
(−1)xi γiγ5 ⊗ (γiγ5)∗ γiγ0 ⊗ (γiγ0)∗ 1++ 1−− aA ρT

(−1)xj +xk γjγk ⊗ (γjγk )∗ γi ⊗ γ∗i 1+− 1−− bT tρV

(−1)xi +xj +xk γ0 ⊗ γ∗0 γ5 ⊗ (γ5)∗ 0+− 0−+ −V tπPSt

tt channel of primary interest

[Altmeyer et al., 1993]
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Temporal Correlators in Continuous TimeTemporal Correlators in Continuous TimeTemporal Correlators in Continuous TimeTemporal Correlators in Continuous TimeTemporal Correlators in Continuous Time

• Introduce binning
• Evaluate at same spatial site ⇒ Zero momentum projection
• Accumulate histograms while worm head propagates

Value per bin: g(T )
#bins

• Distinguish histograms for even and odd interval contributions

Extract pole masses from temporal correlators + Study various channels

In CT: Masses measured in units of M/T
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Discrete and Continuous Time Correlator FitsDiscrete and Continuous Time Correlator FitsDiscrete and Continuous Time Correlator FitsDiscrete and Continuous Time Correlator FitsDiscrete and Continuous Time Correlator Fits

Discrete time: 4 parameter fit
Either combined:

C(τ) = aNO cosh(mNO(τ − Nτ/2))− aO cos(πτ) cosh(mO(τ − Nτ/2))
Or split up for Even and Odd histograms:

CDT,Even(τ) = aNO cosh(mNO(τ − Nτ/2))−aO cosh(mO(τ − Nτ/2)
CDT,Odd(τ) = aNO cosh(mNO(τ − Nτ/2))︸ ︷︷ ︸

Non-oscillating Correlator

+ aO cosh(mO(τ − Nτ/2)︸ ︷︷ ︸
Oscillating Correlator

⇒ CDT,NO(τ) = 1
2 (CDT,Even(τ) + CDT,Odd(τ)) , CDT,O(τ) = 1

2 (CDT,Even(τ)− CDT,Odd(τ))

 81.4

 81.6

 81.8

 82

 82.2

 82.4

 82.6

 0  2  4  6  8
Nτ

Nτ=16

C(τ)
CDT,Odd(τ)
CDT,Even(τ)
CDT,NO(τ)
Even/Odd histogram data

Continuous time: 2/4 parameter fit of added and subtracted histograms respectively

CCT,NO(τ) = aNO cosh(mNO(τ − 1/2)) =1
2 (COdd (τ) + CEven(τ))

CCT,O(τ) = aO cosh(mO(τ − 1/2)) =1
2 (COdd(τ)− CEven(τ))
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From discrete Histograms to Correlators and MassesFrom discrete Histograms to Correlators and MassesFrom discrete Histograms to Correlators and MassesFrom discrete Histograms to Correlators and MassesFrom discrete Histograms to Correlators and Masses
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From discrete Histograms to Correlators and MassesFrom discrete Histograms to Correlators and MassesFrom discrete Histograms to Correlators and MassesFrom discrete Histograms to Correlators and MassesFrom discrete Histograms to Correlators and Masses

 0
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a τ
M

1/Nτ

πPS
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M
/T

1/Nτ
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Change aτM → M/T in order to compare with Continuous Time results
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Continuous Time CorrelatorsContinuous Time CorrelatorsContinuous Time CorrelatorsContinuous Time CorrelatorsContinuous Time Correlators
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Four Parameter FitFour Parameter FitFour Parameter FitFour Parameter FitFour Parameter Fit
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Behaviour around chiral transitionBehaviour around chiral transitionBehaviour around chiral transitionBehaviour around chiral transitionBehaviour around chiral transition
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Summary and OutlookSummary and OutlookSummary and OutlookSummary and OutlookSummary and Outlook

• Measured monomer-monomer two-point functions → constructed temporal
correlators

• On our way to extract and compare pole masses for discrete and continuous time
• Consider excited states, especially for low temperatures ⇒ Mass extraction and

analysis not yet fully completed

• Obtain diffusion constant from zero momentum meson correlators
⇒ Extract spectral function from correlation data

C(τ,T ) =
∫ ∞
0

dωK(ω, τ)σ(ω,T ) =
∫ ∞
0

dω
cosh(τ(ω − 1

2T ))
sinh( ω2T ) σ(ω,T )

Typical bottleneck: #data points in temporal direction → advantage of large binning
• Reconstruct spectral function by standard methods like MEM
• ω → 0 extrapolation

• Non-zero mass • Nf = 2 • β corrections
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