Thermodynamics at Strong Coupling on Anisotropic Lattices

Wolfgang Unger, Bielefeld University

Collaborators: Dennis Bollweg and Marc Klegrewe

Lattice 2018

East Lansing, MI, 25.07.2018

Overview

Motivation:

- Anisotropic lattices: necessary to study thermodynamics in strong coupling regime (β fixed)
- This has been studied via a dual formulation in the chiral limit
- We extend these results to finite quark mass

Content:

- Lattice QCD at Strong Coupling, Role of Anisotropy
- 2 Thermodynamic Observables
- Results on Anisotropy and Continuous Time Limit
- Some results on the phase diagram

QCD Phase Diagram and Sign Problem

- ullet Sign problem: no direct RHMC simulations at finite μ due to complex weights
- Complexifying parameter space (Complex Langevin, Lefshetz Thimbles: promising, but not (yet) applicable to full QCD

Sign problem is representation dependent!

- dual representations oftentimes solve or milden sign problems
- for lattice QCD, a dual representation is well known in the strong coupling limit

Lattice QCD at Strong Coupling

Alternative approach:

Limit of strong coupling: $\beta = \frac{6}{g^2} \rightarrow 0$

- gauge fields $U_{\mu}(x)$ can be integrated out $\det[D] \to M[\bar{\psi},\psi], B[\psi,\psi,\psi]$
- "dual" representation: via color singlets on the links!
- at strong coupling: mesons and baryons

Advantage:

- (almost) no sign problem
- fast simulations (no supercomputers necessary)
 - ⇒ complete phase diagram can be calculated

Strong Coupling Expansion:

- ullet difficult to include gauge corrections eta>0 to make lattice finer
 - ightarrow talk by Giuseppe Gagliardi "Towards a Dual Representation of Lattice QCD"

Status of the SC-QCD Phase Diagram in the Chiral Limit

Via reweighting in β from $\beta = 0$: $\mathcal{O}(\beta)$ corrections for SU(3)

Immediate Question:

- Do the nuclear and chiral transition split at sufficiently large β ?
- New simulations obtained by sampling plaquette contributions via world sheets give similar results [G. Gagliardi, Kim & U. arXiv:1710.07564]
- Is a finite quark mass necessary for splitting?

Status of SC-QCD on Anisotropic Lattices

Anisotropic Lattices, $\xi = \frac{a_s}{a_t} > 1$:

- needed in strong coupling regime to modify the temperature (details below)
- anisotropy dependence has been studied for $m_q = 0$
- defines unambigously the continuous time limit: $a_t \to 0$ $(N_t \to \infty, \ \xi \to \infty \text{ at fixed } aT = \frac{\xi}{N_L})$

To be addressed here:

- extend anisotropy callibration to finite quark mass
- apply results to thermodynamic observables and the phase diagram

Not yet addressed:

 how to obtain gauge corrections on anisotropic lattices at finite quark mass (so far only in chiral limit)

[de Forcrand, U., Vairinhos Phys. Rev. D 97 (2018)]

Strong Coupling Partition Function

Exact rewriting after Grassmann integration: Mapping onto discrete system:

[Rossi & Wolff (1984)], [Karsch & Mütter (1989)]

$$Z_F(m_q,\mu) = \sum_{\{k,n,\ell\}} \underbrace{\prod_{b=(x,\mu)} \frac{(N_{\rm c}-k_b)!}{N_{\rm c}! \, k_b!}}_{\text{meson hoppings } M_{\rm x} M_y} \underbrace{\prod_{x} \frac{N_{\rm c}!}{n_x!} (2am_q)^{n_{\rm x}}}_{\text{n_x}!} \underbrace{\prod_{\ell} w(\ell,\mu)}_{\text{degree of the polynomial o$$

• Grassmann constraint:

$$n_{x} + \sum_{\hat{\mu} = +\hat{0}, \dots + \hat{d}} \left(k_{\hat{\mu}}(x) + \frac{N_{c}}{2} |\ell_{\hat{\mu}}(x)| \right) = N_{c}$$

• weight $w(\ell, \mu)$ and sign $\sigma(\ell) \in \{-1, +1\}$ for oriented baryonic loop ℓ depends on loop geometry

Lattice 2018

Strong Coupling LQCD at Finite Temperature

How to vary the temperature?

- $aT = 1/N_t$ is discrete with N_t even
- $aT_c \simeq 1.5$ \Rightarrow we cannot address the phase transition!

Solution: introduce an anisotropy γ in the Dirac couplings such that $a_t \neq a_s = a$:

$$\begin{split} \mathcal{L}_{\mathrm{F}} &= \sum_{\mu} \frac{\gamma^{\delta_{\mu 0}}}{2} \eta_{\nu}(x) \left(e^{\mu \delta_{\mu 0}} \bar{\chi}(x) U_{\nu}(x) \chi(x+\hat{\mu}) - e^{-\mu \delta_{\mu 0}} \bar{\chi}(x+\hat{\mu}) U_{\mu}^{\dagger}(x) \chi(x) \right) \\ Z_{F}(m_{q}, \mu, \gamma) &= \sum_{\{k, n, \ell\}} \prod_{b = (x, \mu)} \frac{(N_{c} - k_{b})!}{N_{c}! k_{b}!} \gamma^{2k_{b} \delta_{\mu 0}} \prod_{x} \frac{N_{c}!}{n_{x}!} (2am_{q})^{n_{x}} \prod_{\ell} w(\ell, \mu) \end{split}$$

- Meanfield at strong coupling: $\frac{a_s}{a_t} \equiv \xi(\gamma) = \gamma^2$, since $\gamma_c^2 = N_t \frac{(d-1)(N_c+1)(N_c+2)}{6(N_c+3)}$
 - \Rightarrow definition of the temperature: $aT = \frac{\xi(\gamma)}{N_s}$

However:

Need to know the precise correspondence between $\xi \equiv a_s/a_t$ and γ

• Nonperturbative result: $\xi(\gamma) \approx \kappa \gamma^2 + \frac{\gamma^2}{1+\lambda \gamma^4}$, $\kappa = 0.781(1)$

$$\xi(\gamma) \approx \kappa \gamma^2 + \frac{\gamma^2}{1 + \lambda \gamma^4}, \quad \kappa = 0.781(1)$$

γ -Dependence of Thermodynamic Observables

Consider U(3) in the chiral limit first:

$$Z(\gamma) = \sum_{\{k\}} \left(\prod_{b=(x,\mu)} \frac{(3-k_b)!}{3! k_b!} \right) \gamma^{2N_{Dt}}$$

with N_{Dt} the total number of **timelike dimers**, $n_{Dt} = \frac{1}{N_s^3 N_t} N_{Dt}$

The dimensionless thermodynamic observables are:

$$a_s^3 a_t \epsilon = -\left. \frac{a^3 a_t}{V} \frac{\partial \log Z}{\partial T^{-1}} \right|_V = \frac{\xi}{\gamma} \frac{d\gamma}{d\xi} \langle 2n_{Dt} \rangle$$

$$\left[a_s^3 a_t p = - \ a_s^3 a_t T rac{\partial \log Z}{\partial V}
ight|_T = rac{\xi}{3\gamma} rac{d\gamma}{d\xi} \langle 2n_{Dt}
angle$$

$$\epsilon - 3p = 0$$

$$s = \frac{4\epsilon}{3T}$$

γ -Dependence of Thermodynamic Observables

Now consider SU(3) at finite quark mass:

$$Z(m_q, \mu_B, \gamma) = \sum_{\{k, n, \ell\}} \sigma(\ell) \left(\prod_{b=(x, \mu)} \frac{(3-k_b)!}{3! k_b!} \right) \left(\prod_x \frac{3!}{n_x!} \right) (2a_t m_q)^{N_M} \gamma^{N_q} e^{N_t a_t \mu_B \Omega(\ell)}$$

with $N_q=2N_{Dt}+3N_{Bt}$, and $N_{Bt}=\sum |b_{x,0}|$ the number of timelike baryon segments.

The dimensionless thermodynamic observables are:

• chiral condensate:
$$a_s^3 \langle \bar{\chi} \chi \rangle = a_s^3 \frac{\langle N_M \rangle}{N_\sigma^3 N_t a_s^3 a_t} = \frac{1}{a_t m_q} \langle n_M \rangle$$

• energy density:
$$\left. \left. \left. a^3 a_t \epsilon = \mu_B \rho_B - \left. \frac{a^3 a_t}{V} \frac{\partial \log Z}{\partial T^{-1}} \right|_{V,\mu_B} = \frac{\xi}{\gamma} \frac{d\gamma}{d\xi} \left\langle n_q \right\rangle - \left\langle n_M \right\rangle \right.$$

• entropy density:
$$s = \frac{1}{T} \left(\frac{4\epsilon}{3} - \mu_B \rho_B \right)$$

How to determine $\xi(\gamma)$

Idea: anisotropy callibration

Grassmann constraint implies locally conserved current:

[Chandrasekharan & Jiang '03]

$$j_{\mu}(x) = \sigma(x) \left(k_{\mu}(x) - \frac{3}{2} |b_{x,\mu}| - \frac{3}{2d} \right) \quad \to \quad \sum_{\pm \hat{\mu}} (j_{\mu}(x) - j_{\mu}(x - \hat{\mu})) = 0$$

- ullet conserved charge $Q_\mu=\sum_{ imes \perp \mu} j_\mu(imes)$ has $\langle Q_\mu
 angle=0$, but non-zero variance: $\left\langle Q_\mu^2
 ight
 angle
 eq 0$
- calibration of $\xi(\gamma)$ via renormalization condition on physically isotropic box:

[de Forcrand, U., Vairinhos Phys. Rev. D 97 (2018)]

How to determine $\xi(\gamma, \hat{m})$ at finite quark mass?

Problem:

- $j_{\mu}(x)$ is no longer a conserved current
- ullet on a given configuration, e.g. $Q_t(t_1) \neq Q_t(t_2)$

Solution:

- after averaging over parallel hypersurfaces: $Q_t = \frac{1}{Nt} \sum_t (Q_t(t))$ the **charge has same distribution** as for $m_q = 0$ (same number of monomers on even and odd sites)
- ullet again, we demand the fluctuations to be equal $\left\langle Q_{t}^{2}\right
 angle \left(\gamma_{0}\right)\overset{!}{=}\left\langle Q_{s}^{2}\right
 angle \left(\gamma_{0}\right)$
- however: at finite bare quark mass $\hat{m} \equiv a m_q$, we need to **keep the physics** constant e.g. $M_\pi L = \text{const}$ or $[\hat{m} \langle \bar{\chi} \chi \rangle]_L = \text{const}$ \rightarrow we need to determine $\hat{m}(\xi)$ as well! (see also [Levkova et al., PRD 72 (2006)])

Our strategy: require the monomer density to be constant:

$$a_s^4 \hat{m} \langle \bar{\chi} \chi \rangle = a_s^3 a_t \; \xi \langle n_x \rangle$$

(not the case that lattice spacings factorize $(a_t m_q)(a^3 \langle \bar{\chi}\chi \rangle)$

Results from the anisotropy callibration

- the condition $\xi \langle n_x \rangle$ =const defines lines of constant physics $\hat{m}(\xi)$ (with $m_1 = \hat{m}(\xi = 1) = am_g$ the isotropic bare mass)
- determine the bare anisotropy γ for various ξ , i.e. for temperatures $aT=\frac{\xi}{N_t}$
- continuous time limit $N_t \to \infty$ well defined also for finite am_q with m_q/T fixed.

Continuous Time Limit at finite quark mass

- continuous time limit well defined
- non-perturbative correction factor has simple quark mass dependence:

$$\kappa(m_1) = \frac{\kappa_0}{1 + c_1 m_1 + c_2 m_1^2}$$

ullet temperature and chemical potential: $aT=\kappa(m_1)[aT]_{
m mf}$, $a\mu_B=\kappa(\hat{m})[a\mu_B]_{
m mf}$

Results from $\xi(\gamma, \hat{m})$ for Zero Temperature

The Pion Decay Constant F_{π} is obtained from the charge fluctuation:

$$aF_{\pi} = \lim_{N_s \to \infty} a^2 \Upsilon, \qquad a^2 \Upsilon = \frac{1}{N_s^2} \left\langle Q^2 \right\rangle_{\gamma_{np}}$$

$$0.08$$

$$0.078$$

$$0.076$$

$$0.076$$

$$0.077$$

$$0.070$$

$$0.075$$

$$0.075$$

$$0.075$$

$$0.066$$

$$0.064$$

$$0.064$$

$$0.064$$

$$0.064$$

$$0.064$$

$$0.062$$

$$0.064$$

$$0.064$$

$$0.064$$

$$0.064$$

$$0.065$$

$$0.066$$

$$0.064$$

$$0.066$$

$$0.064$$

$$0.066$$

$$0.064$$

$$0.066$$

$$0.064$$

$$0.069$$

$$0.066$$

$$0.064$$

$$0.069$$

$$0.069$$

$$0.069$$

$$0.07$$

$$0.08$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

$$0.09$$

- Left: determination of F_{π} for various quark masses, extrapolated in CT limit
- Right: determination of F_{π} via continuous time Monte Carlo

Thermodynamic Observables at $m_q = 0.1$

Thermodynamic Observables at $m_q = 0.05$

The phase diagram in the strong coupling limit

Well established is the chiral limit:

- ullet corrected phase boundaries with $\xi(\gamma)$ rescales all $N_t>2$ on universal curve
- ullet matches on continuous time phase boundary $(N_t = \infty \ [$ de Forcrand & U. '11])

Phase diagram for finite quark mass:

- has been studied by Jangho Kim via mean field definitions $[aT]_{\rm mf}, [a\mu_B]_{\rm mf}$
- non-perturbative result is under preparation

Conclusions

Results:

- ullet anisotropy $rac{a}{at}\equiv \xi(\gamma,\hat{m})$ determined non-perturbatively also for $m_q>0$
- allows to measure thermodynamical observables correctly
- allows unambigous identification of phase boundary
- ullet simulations in continuous time limit $\xi o \infty$ confirm extrapolated results
 - ightarrow next talk by Marc Klegrewe on "Temporal Correlators in the Continuous Time Limit of Lattice QCD"

Goals: address anisotropy for $\beta > 0$:

- non-perturbative determination of $a/a_t \equiv \xi(\gamma_F, \gamma_G, \beta)$
- ullet simulations to all orders of eta
- determine interaction measure for $\beta > 0$, $\mu > 0$

Anouncement

We would like ot invite you to the ...

Sign Workshop:

- Date: 10-14 Sep 2018
- Location: Bielefeld University
- Topics: QCD and related theories, Nuclear Many Body, Dual
 Formulations, Langevin and Lefschetz Approaches, Algorithmic Developments
- Website: www.physik.uni-bielefeld.de/sign18
- Stipends: available for PhD students
- Deadline: Augst 5th 2018
- <u>Contact:</u> Christian Schmidt, Wolfgang Unger

sign18@physik.uni-bielefeld.de

Backup: Connection Between SC and Continuum Limit?

One of several **possible scenarios** for the extension to the continuum:

- back plane: strong coupling phase diagram ($\beta=0$), $N_{\rm f}=1$
- front plane: continuum phase diagram ($\beta = \infty$, a = 0)
- due to fermion doubling, corresponds to $N_{\rm f}=4$ in continuum (no rooting)

Backup: Polyakov Loop and Plaquettes in the Chiral Limit

Backup: Severity of Sign Problem at finite quark mass

