Determination of nucleon sigma terms II

Christian Hoelbling

Bergische Universität Wuppertal

Lattice 2018, MSU East Lansing July 25th 2018

Budapest-Marseille-Wuppertal collaboration

Scalar quark content of the nucleon

Nucleon mass:

$$M_{N}=\langle N|T^{\mu}_{\mu}|N
angle -\langle 0|T^{\mu}_{\mu}|0
angle$$

Quark contribution to energy-momentum tensor (lattice regularization):

$$T^{\mu}_{\mu} = \sum_{q} m_{q} \bar{q} q + H_{U}$$

Sigma terms give quark mass contribution towards nucleon mass

$$\sigma_{q} = m_{q} \langle \mathbf{N} | \bar{q} q | \mathbf{N} \rangle - m_{q} \langle \mathbf{0} | \bar{q} q | \mathbf{0} \rangle$$

Also effective scalar couplings to quarks in nucleons: relevant for DM searches etc.

Christian Hoelbling (Wuppertal)

Feynman-Hellmann theorem

Theorem linking 2-point and 3-point functions Requirements for lattice theory:

- Transfer matrix on $T = e^{-\bar{\Psi}M(U)\Psi}$ on gauge config U exists
- Mass term of the form $M_{X,Y}(U) = m\delta_{X,Y}$

Easy to show that

$$\frac{\partial M_{N}}{\partial m_{q}} = m_{q} \langle N | \bar{q}q | N \rangle - m_{q} \langle 0 | \bar{q}q | 0 \rangle = \sigma_{q}$$

Strategy:

$$\frac{\partial M_N}{\partial m_q} = \frac{\partial M_N}{\partial M_P^2} \frac{\partial M_P^2}{\partial m_q}$$

• $\partial M_P^2 / \partial m_q$ with physical point staggered data \rightarrow Lukas Varnhorst • $\partial M_N / \partial M_P^2$ with 3-HEX clover: this talk

Ensembles

Our Ensembles

Ensembles

Christian Hoelbling (Wuppertal)

Proton neutron mass difference

June 21st, 2017 5 / 17

Excited state contributions

- Multiple fit ranges
- Per range, keep excited state error constant relative to statistical (Assume $\Delta M = 500 \text{MeV}$)
- Crosschecked for consistency with excited state fits

Nucleon quark content M

Mass extraction

- Check for random distribution of ensemble fit qualities
- KS test of quality of fit cdf
- 4 plateaux ranges in final analysis

Analysis strategy

Problem:

• Determine $M_P^2 = M_\pi^2$, $M_{K_\chi}^2 (= M_K^2 - M_\pi^2/2)$ dependence of M_N at physical point

Method:

- Fit $M_N(M_{\pi}, M_{K_{\chi}}, L, a)$
 - Added dedicated FV configs from QCD+QCD ensembles (neutral mesons and baryons extracted)
- Set scale with M_N
 - Crosscheck with M_{Ω} scale setting
 - No discretization terms at physical point φ: either αa or a² times (M²_π - (M^φ_π)²) and (M²_{K_ν} - (M^φ_{K_ν})²)
- Estimate systematic error

Nucleon fit

- $\frac{M_{\pi}}{\text{MeV}} < \{360, 420\}$
- Various Polynomial, Padé and χPT ansätze
- Spread into systematic error
- $M_N \propto M_0 + cM_\pi$ bad Q and wrong M_Ω

Nucleon fit

- $\frac{M_{\pi}}{\text{MeV}} < \{360, 420\}$
- Various Polynomial, Padé and χPT ansätze
- Spread into systematic error
- $M_N \propto M_0 + cM_\pi$ bad Q and wrong M_Ω

Finite volume effects

• We fit leading effects $\frac{M_X(L) - M_X}{M_X} = c M_\pi^{1/2} L^{-3/2} e^{-M_\pi L}$

• Compatible with χ PT expectation: c = 36(12)(5)GeV⁻²

(Colangelo et. al., 2010)

Christian Hoelbling (Wuppertal)

Systematic error treatment

One conservative strategy for systematics: (BMWc 2008, BMWc 2014)

- Identify all higher order effects you have to neglect
- For each of them:
 - Repeat the entire analysis treating this one effect differently
 - Add the spread of results to systematics
- Important:
 - Do not do suboptimal analyses
 - Do not double-count analyses
- Error sources considered:
 - Plateaux range (Excited states)
 - M_{π} , $M_{K_{\chi}}$ interpolations/extrapolations
 - Cuts on maximal M_{π}
 - Continuum extrapolation

Systematic error

- Total 6144 analyses:
- 64 variations of matrix *J*:
 - 4 *m_{ud}* continuum terms
 - 4 *m*_s continuum terms
 - 2 plateaux ranges
- 96 variations of $\sigma_{\pi,K_{\chi}}$
 - 2 $M_{K_{\gamma}}$ fit forms
 - 2 M_{π} fit forms
 - 2 M_{π} cuts
 - 3 continuum terms
 - 4 plateaux ranges
- Other variations crosschecked: no further relevant terms found

Christian Hoelbling (Wuppertal)

Systematic error

- Total 6144 analyses
- Difference: higher order effects
- Draw cdf of results
- Different weights possible
- Crosscheck agreement

Results

From the effective Hamiltonean

$$H = H_{\rm iso} + \frac{\delta m}{2} \int d^3 x (\bar{d}d - \bar{u}u)$$

we obtain (with $\delta m = m_d - m_u$ and normalization $\langle N | N \rangle = 2M_N$)

$$\Delta_{QCD}M_N = \frac{\delta m}{2M_p} \langle p | \bar{u}u - \bar{d}d | p \rangle$$

which, together with

$$\sigma_{u/d}^{p} = \left(\frac{1}{2} \mp \frac{\delta m}{4m_{ud}}\right) \sigma_{ud}^{p} + \left(\frac{1}{4} \mp \frac{m_{ud}}{2\delta m}\right) \frac{\delta m}{2M_{p}} \langle p|\bar{d}d - \bar{u}u|p\rangle$$

gives $(r = m_{u}/m_{d})$

$$\sigma_{u}^{p/n} = \left(\frac{r}{1+r}\right)\sigma_{ud}^{N} \pm \frac{1}{2}\left(\frac{r}{1-r}\right)\Delta_{QCD}M_{N} + O(\delta m^{2}, m_{ud}\delta m)$$
$$\sigma_{d}^{p/n} = \left(\frac{1}{1+r}\right)\sigma_{ud}^{N} \mp \frac{1}{2}\left(\frac{1}{1-r}\right)\Delta_{QCD}M_{N} + O(\delta m^{2}, m_{ud}\delta m)$$

Christian Hoelbling (Wuppertal)

Preliminary results

Mesonic σ terms:

1

$$\sigma_{\pi}^{N} = 42.0(1.3)(1.4)$$
MeV $\sigma_{K_{\chi}}^{N} = 50.9(3.3)(2.8)$ MeV

Nucleon mass in SU(2) and SU(3) chiral limit:

$$M_{N_{\chi}}^{SU(2)} = 895.7(1.4)(1.9)$$
MeV $M_{N_{\chi}}^{SU(3)} = 848.1(3.5)(3.3)$ MeV

Quark σ terms with staggered mixing matrix:

 $\sigma_{ud}^{N} = 37.3(3.0)(4.2)$ MeV $\sigma_{s}^{N} = 54.2(4.3)(3.1)$ MeV

With $\Delta_{QCD}M_N = 2.52(17)(24)$ MeV from (BMWc 2014)

$$\sigma_u^p = 13.4(1.0)(1.4) \text{MeV} \qquad \sigma_d^p = 22.7(2.1)(2.8) \text{MeV} \\ \sigma_u^n = 11.0(1.0)(1.4) \text{MeV} \qquad \sigma_d^n = 27.6(2.0)(2.8) \text{MeV}$$

PRELIMINARY results

Christian Hoelbling (Wuppertal)

Results

COMPARISON

Compatible with old results

Tension with Hoferichter et. al. 15,17