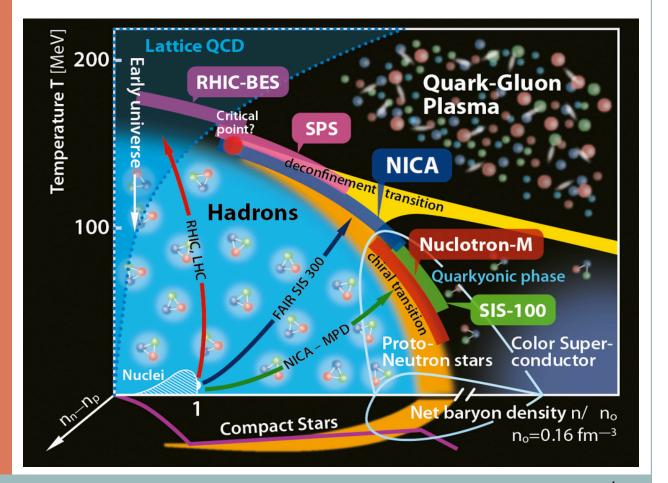
QCD at non-zero density and phenomenology

CLAUDIA RATTI UNIVERSITY OF HOUSTON

• Is there a critical point in the QCD phase diagram?

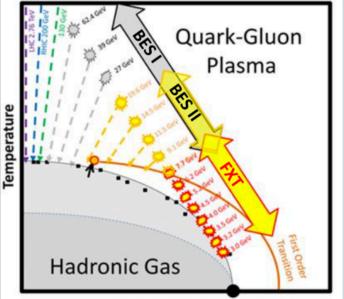
- What are the degrees of freedom in the vicinity of the phase transition?
- Where is the transition line at high density?
- What are the phases of QCD at high density?
- Are we creating a thermal medium in experiments?

Open Questions



Second Beam Energy Scan (BESII) at RHIC

- Planned for 2019-2020
- 24 weeks of runs each year
- Beam Energies have been chosen to keep the μ_B step ~50 MeV
- Chemical potentials of interest: $\mu_B/T\sim 1.5...4$



Baryon Chemical Potential μ_B

√s (GeV)	19.6	14.5	11.5	9.1	7•7	6.2	5.2	4.5
μ _B (MeV)	205	260	315	370	420	487	541	589
# Events	400M	300M	230M	160M	100M	100M	100M	100M
Collider					Fixed Target 2/33			

Comparison of the facilities										
Compilation by D. Cebra										
Facilty	RHIC BESII	SPS	NICA	SIS-100	J-PARC HI					
				SIS-300						
Exp.:	STAR	NA61	MPD	CBM	JHITS					
	+FXT		+ BM@N							
Start:	2019-20	2009	2020	2022	2025					
_	2018		2017							
Energy:	7.7–19.6	4.9-17.3	2.7 - 11	2.7-8.2	2.0-6.2					
√s _{NN} (GeV)	2.5-7.7		2.0-3.5							
Rate:	100 HZ	100 HZ	<10 kHz	<10 MHZ	100 MHZ					
At 8 GeV	2000 Hz									
Physics:	CP&OD	CP&OD	OD&DHM	OD&DHM	OD&DHM					
ColliderFixed targetColliderFixed targetFixed targetFixed targetLighter ionFixed targetFixed targetcollisionsCollisionsFixed targetFixed target										
CP=Critical Point OD= Onset of Deconfinement DHM=Dense Hadronic Matter										

How can lattice QCD support the experiments?

• Equation of state

• Needed for hydrodynamic description of the QGP

• QCD phase diagram

• Transition line at finite density

• Constraints on the location of the critical point

• Fluctuations of conserved charges

- Can be simulated on the lattice and measured in experiments
- Can give information on the evolution of heavy-ion collisions
- Can give information on the critical point

Hadron Resonance Gas model

Dashen, Ma, Bernstein; Prakash, Venugopalan; Karsch, Tawfik, Redlich

- Interacting hadronic matter in the ground state can be well approximated by a non-interacting resonance gas
- The pressure can be written as:

$$p^{HRG}/T^4 = \frac{1}{VT^3} \sum_{i \in mesons} \ln \mathcal{Z}^M_{m_i}(T, V, \mu_{X^a}) + \frac{1}{VT^3} \sum_{i \in baryons} \ln \mathcal{Z}^B_{m_i}(T, V, \mu_{X^a})$$

where

$$\ln \mathcal{Z}_{m_i}^{M/B} = \mp \frac{V d_i}{2\pi^2} \int_0^\infty dk k^2 \ln(1 \mp z_i e^{-\varepsilon_i/T}) \quad ,$$

with energies $\varepsilon_i = \sqrt{k^2 + m_i^2}$, degeneracy factors d_i and fugacities

$$z_i = \exp\left(\left(\sum_a X_i^a \mu_{X^a}\right)/T\right)$$
.

 X^a : all possible conserved charges, including the baryon number B, electric charge Q, strangeness S.

Fugacity expansion for
$$\mu_{\rm S} = \mu_{\rm Q} = 0$$
: $\frac{p_B}{T^4} = \sum_{i \in B} \frac{d_i}{\pi^2} \left(\frac{m_i}{T}\right)^2 \sum_{N=1}^{\infty} (-1)^{N+1} N^{-2} K_2(N\frac{m_i}{T}) \cosh\left[N\frac{\mu_B}{T}\right]$

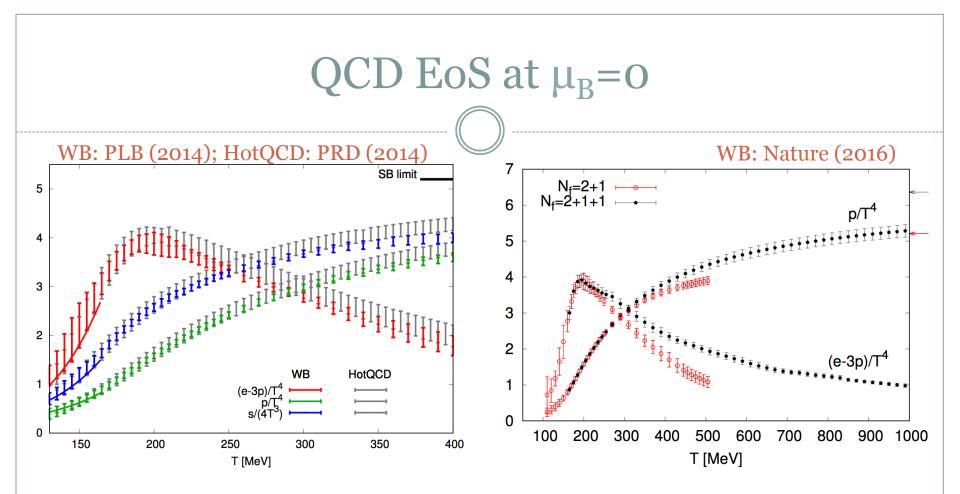
Boltzmann approximation: N=1

QCD Equation of State at finite density

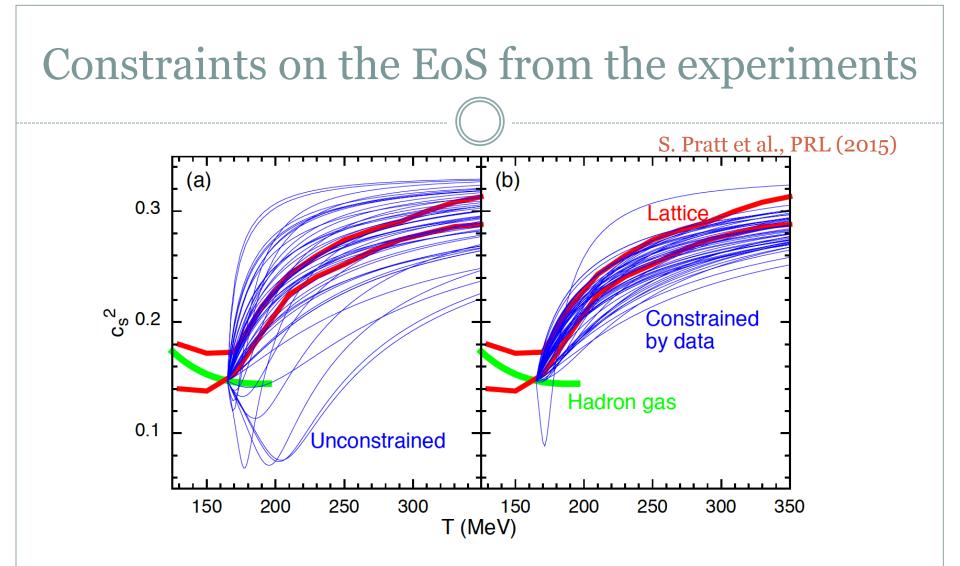
TAYLOR EXPANSION

ANALYTICAL CONTINUATION FROM IMAGINARY CHEMICAL POTENTIAL

ALTERNATIVE EQUATIONS OF STATE AT LARGE DENSITIES



- EoS for $N_f=2+1$ known in the continuum limit since 2013
- Good agreement with the HRG model at low temperature
- Charm quark relevant degree of freedom already at T~250 MeV



- Comparison of data from RHIC and LHC to theoretical models through Bayesian analysis
- The posterior distribution of EoS is consistent with the lattice QCD one

Taylor expansion of EoS

• Taylor expansion of the pressure:

$$\frac{p(T,\mu_B)}{T^4} = \frac{p(T,0)}{T^4} + \sum_{n=1}^{\infty} \left. \frac{1}{(2n)!} \frac{\mathrm{d}^{2n}(p/T^4)}{d(\frac{\mu_B}{T})^{2n}} \right|_{\mu_B=0} \left(\frac{\mu_B}{T}\right)^{2n} = \sum_{n=0}^{\infty} c_{2n}(T) \left(\frac{\mu_B}{T}\right)^{2n}$$

- Two ways of extracting the Taylor expansion coefficients:
 - Direct simulation
 - Simulations at imaginary μ_B
- Two physics choices:
 - $\mu_{\rm B}\neq 0, \mu_{\rm S}=\mu_{\rm Q}=0$
 - μ_{s} and μ_{Q} are functions of T and μ_{B} to match the experimental constraints:

$$< n_{\rm S} >= 0$$
 $< n_{\rm Q} >= 0.4 < n_{\rm B} >$

Pressure coefficients: direct simulation

Direct simulation:

• Calculate derivatives of *lnZ*, where *Z* in the staggered formulation is given by:

$$Z = \int \mathcal{D}U \ e^{-S_g} (\det M_1)^{1/4} (\det M_2)^{1/4} (\det M_3)^{1/4} = \int \mathcal{D}U \ e^{-S_{\text{eff}}}$$

where M_i is the fermionic determinant of flavor *i* and Sg the gauge action

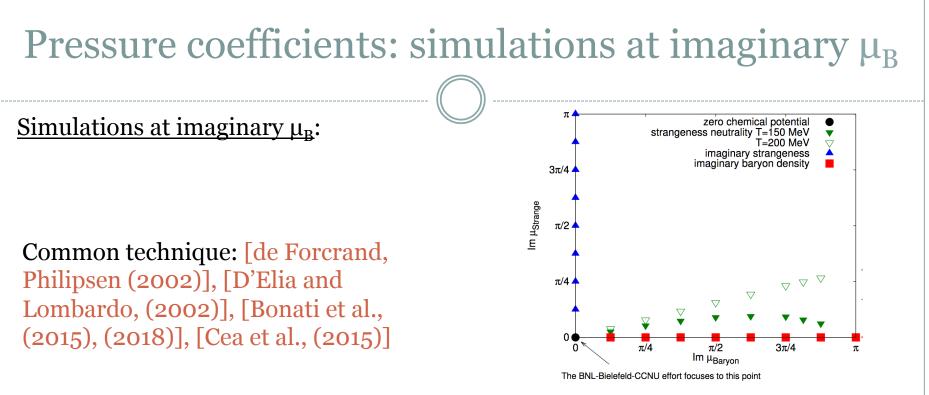
• The derivatives with respect to the chemical potential of flavor i are

$$\begin{split} A_{j} &= \frac{d}{d\mu_{j}} (\det M_{j})^{1/4} = \tilde{\mathrm{tr}} M_{j}^{-1} M_{j}', \\ B_{j} &= \frac{d^{2}}{(d\mu_{j})^{2}} (\det M_{j})^{1/4} = \tilde{\mathrm{tr}} \left(M_{j}'' M_{j}^{-1} - M_{j}' M_{j}^{-1} M_{j}' M_{j} - 1 \right), \\ C_{j} &= \frac{d^{3}}{(d\mu_{j})^{3}} (\det M_{j})^{1/4} = \tilde{\mathrm{tr}} \left(M_{j}' M_{j}^{-1} - 3M_{j}'' M_{j}^{-1} M_{j}' M_{j}^{-1} \right), \\ D_{j} &= \frac{d^{4}}{(d\mu_{j})^{4}} \log(\det M_{j})^{1/4} = \tilde{\mathrm{tr}} \left(M_{j}'' M_{j}^{-1} - 4M_{j}' M_{j}^{-1} M_{j}' M_{j}^{-1} - 3M_{j}'' M_{j}^{-1} M_{j}' M_{j}^{-1} \right), \\ D_{j} &= \frac{d^{4}}{(d\mu_{j})^{4}} \log(\det M_{j})^{1/4} = \tilde{\mathrm{tr}} \left(M_{j}'' M_{j}^{-1} - 4M_{j}' M_{j}^{-1} M_{j}' M_{j}^{-1} - 3M_{j}'' M_{j}^{-1} M_{j}' M_{j}^{-1} \right), \\ D_{j} &= \frac{d^{4}}{(d\mu_{j})^{4}} \log(\det M_{j})^{1/4} = \tilde{\mathrm{tr}} \left(M_{j}'' M_{j}^{-1} - 4M_{j}' M_{j}^{-1} M_{j}' M_{j}^{-1} - 3M_{j}'' M_{j}^{-1} M_{j}' M_{j}^{-1} \right), \\ D_{j} &= \frac{d^{4}}{(d\mu_{j})^{4}} \log(\det M_{j})^{1/4} = \tilde{\mathrm{tr}} \left(M_{j}'' M_{j}^{-1} - 4M_{j}' M_{j}^{-1} M_{j}' M_{j}^{-1} - 3M_{j}'' M_{j}^{-1} M_{j}' M_{j}^{-1} \right), \\ D_{j} &= \frac{d^{4}}{(d\mu_{j})^{4}} \log(\det M_{j})^{1/4} = \tilde{\mathrm{tr}} \left(M_{j}'' M_{j}^{-1} - 4M_{j}' M_{j}^{-1} M_{j}' M_{j}^{-1} - 3M_{j}'' M_{j}^{-1} M_{j}' M_{j}^{-1} \right), \\ D_{j} &= \frac{d^{4}}{(d\mu_{j})^{4}} \log(\det M_{j})^{1/4} = \tilde{\mathrm{tr}} \left(M_{j}'' M_{j}^{-1} - 4M_{j}' M_{j}^{-1} M_{j}' M_{j}^{-1} - 3M_{j}'' M_{j}^{-1} M_{j}' M_{j}^{-1} \right), \\ D_{j} &= \frac{d^{4}}{(d\mu_{j})^{4}} \log(\det M_{j})^{1/4} = \tilde{\mathrm{tr}} \left(M_{j}'' M_{j}^{-1} - M_{j}' M_{j}^{-1} M_{j}' M_{j}^{-1} - 3M_{j}'' M_{j}^{-1} M_{j}' M_{j}^{-1} \right),$$

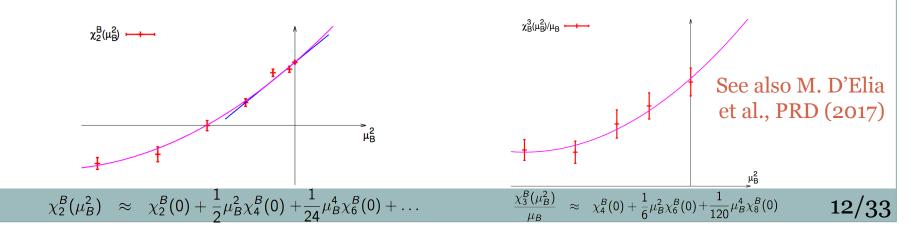
From which: $\partial_{i}^{4} \log Z = \langle A_{i}^{4} \rangle - 3 \langle A_{i}^{2} \rangle^{2} + 3 (\langle B_{i}^{2} \rangle - \langle B_{i} \rangle^{2}) \\ + 6 (\langle A_{i}^{2} B_{i} \rangle - \langle A_{i}^{2} \rangle \langle B_{i} \rangle) + 4 \langle A_{i} C_{i} \rangle + \langle D_{i} \rangle \\$ and so on...

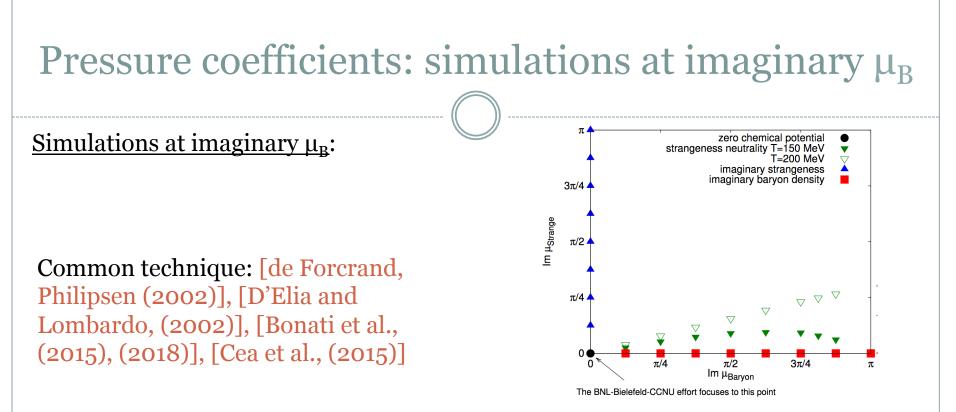
Pressure coefficients **Direct simulation:** O(10⁵) configurations (hotQCD: PRD (2017) and update 06/2018) **Strangeness neutrality** 0.0025 0.00015 $n_{\rm S}=0, n_{\rm O}/n_{\rm B}=0.4$ n_S=0, n_O/n_B=0.4 free quark gas HRG -0.1 n_S=0, n_O/n_B=0.4 HRG cont. est. 0.0001 0.002 cont. est. N₇=12 🔶 0.08 N_τ= 8 💾 HRG — 5x10⁻⁵ 8 🔚 6 📥 cont. extrap. 0.0015 6 📥 _م 0.06 N_τ=16 ⊮ m_e/m_l=20 (open) Ч പ് 12 🔶 27 (filled) 0.001 8 0.04 -5x10⁻⁵ free quark gas 6 📥 0.0005 0.02 -0.0001 m_s/m_l=20 (open) m_s/m_l=20 (open) 27 (filled) 27 (filled) 0 -0.00015 0 220 240 280 140 160 180 200 220 240 260 280 140 160 180 200 260 140 160 180 200 220 240 260 280 T[MeV] T[MeV] T[MeV] $\mu_{\rm S} = \mu_{\rm Q} = 0$ 0.35 cont. est. HRG 3 χ_2^B free quark gas 1 N₇=6 ↦ 0.3 8 💾 T_c=(156.5+/-1.5) MeV T_c=(156.5+/-1.5) MeV 2 m_s/m_l=20 (open) 0.8 0.25 cont. estimate 27 (filled) PDG-HRG N₇=6 ⊢ χ⁶/χ² 9.0^B_{X4}X2^B continuum extrap. 0.2 r_=(156.5 +/-1.5) 8 -N_τ=6 ⊷ 12 🔸 0.15 8 + 0 0.4 12 m_s/m_l=20 (open) 0.1 16 🛞 27 (filled) m_s/m_i=20 (open) -1 0.2 0.05 27 (filled) T [MeV] free quark gas -2 0 0 160 180 200 220 140 240 260 280 140 160 180 200 220 240 260 280 140 160 180 200 220 240 260 280 T [MeV] T [MeV]

11/33



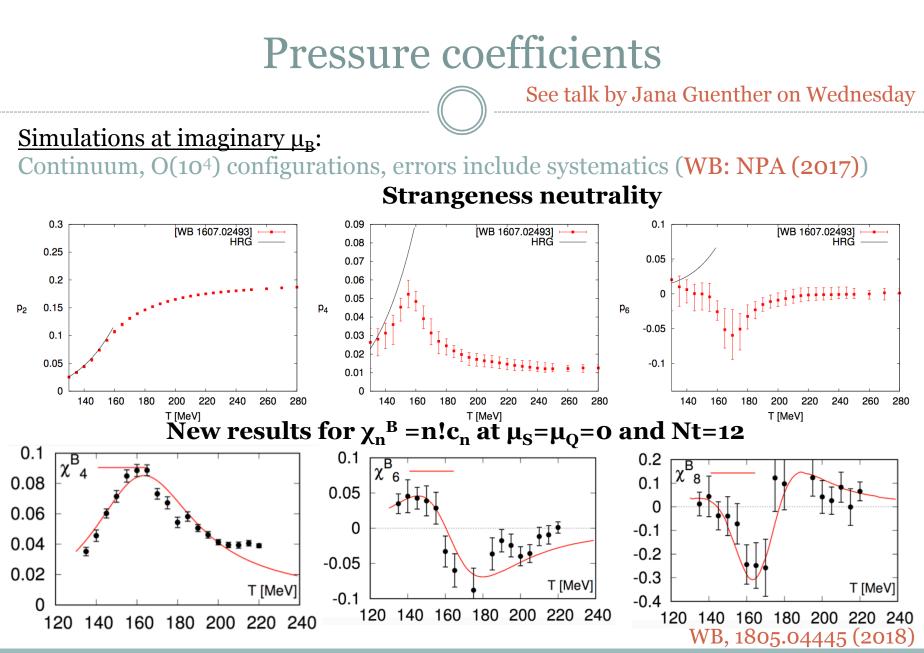
Strategy: simulate lower-order fluctuations and use them in a combined, correlated fit





Strategy: simulate lower-order fluctuations and use them in a combined, correlated fit

$$\begin{split} \chi_{1}^{B}(\hat{\mu}_{B}) &= 2c_{2}\hat{\mu}_{B} + 4c_{4}\hat{\mu}_{B}^{3} + 6c_{6}\hat{\mu}_{B}^{5} + \frac{4!}{7!}c_{4}\epsilon_{1}\hat{\mu}_{B}^{7} + \frac{4!}{9!}c_{4}\epsilon_{2}\hat{\mu}_{B}^{9} \\ \chi_{2}^{B}(\hat{\mu}_{B}) &= 2c_{2} + 12c_{4}\hat{\mu}_{B}^{2} + 30c_{6}\hat{\mu}_{B}^{4} + \frac{4!}{6!}c_{4}\epsilon_{1}\hat{\mu}_{B}^{6} + \frac{4!}{8!}c_{4}\epsilon_{2}\hat{\mu}_{B}^{8} \\ \chi_{3}^{B}(\hat{\mu}_{B}) &= 24c_{4}\hat{\mu}_{B} + 120c_{6}\hat{\mu}_{B}^{3} + \frac{4!}{5!}c_{4}\epsilon_{1}\hat{\mu}_{B}^{5} + \frac{4!}{7!}c_{4}\epsilon_{2}\hat{\mu}_{B}^{7} \\ \chi_{4}^{B}(\hat{\mu}_{B}) &= 24c_{4} + 360c_{6}\hat{\mu}_{B}^{2} + c_{4}\epsilon_{1}\hat{\mu}_{B}^{4} + \frac{4!}{6!}c_{4}\epsilon_{2}\hat{\mu}_{B}^{6}. \end{split}$$
See also M. D'Elia et al., PRD (2017)

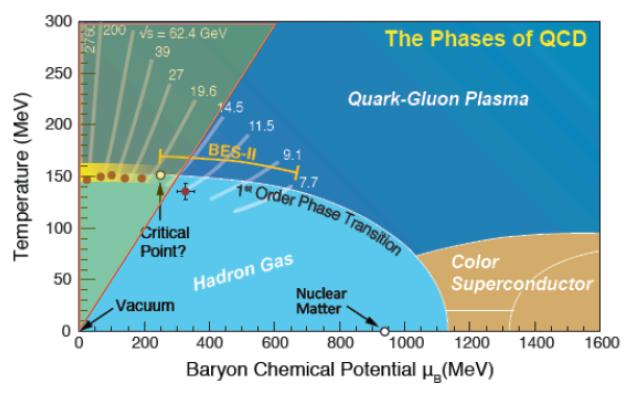


Red curves are obtained by shifting χ_1^B/μ_B to finite μ_B : consistent with no-critical point

Range of validity of equation of state

We now have the equation of state for µ_B/T≤2 or in terms of the RHIC energy scan:

 $\sqrt{s} = 200, \ 62.4, \ 39, \ 27, \ 19.6, \ 14.5 \text{GeV}$

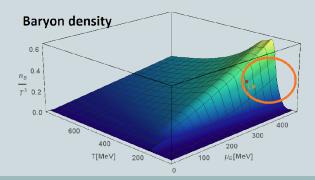


Alternative EoS at large densities

EoS for QCD with a 3D-Ising critical point $T^4c_n^{LAT}(T)=T^4c_n^{Non-Ising}(T)+T_c^4c_n^{Ising}(T)$

P. Parotto et al., 1805.05249 (2018)

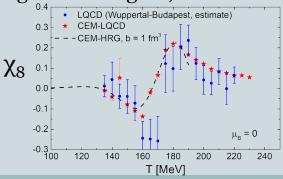
- Implement scaling behavior of 3D-Ising model EoS
- Define map from 3D-Ising model to QCD
- Estimate contribution to Taylor coefficients from 3D-Ising model critical point
- Reconstruct full pressure



Density discontinuous at μ_B>μ_{Bc}

Cluster expansion model Vovchenko, Steinheimer, Philipsen, Stoecker, 1711.01261

- HRG-motivated fugacity expansion for ρ_B $\frac{\rho_B(T,\mu_B)}{T^3} = \chi_1^B(T,\mu_B) = \sum_{k=1}^{\infty} b_k(T) \sinh(k\mu_B/T)$
- b1(T) and b2(T) are model inputs
- All higher order coefficients predicted: $b_k(T) = \alpha_k^{SB} \frac{[b_2(T)]^{k-1}}{[b_1(T)]^{k-2}}$
- Physical picture: HRG with repulsion at moderate T, "weakly" interacting quarks and gluons at high T, no CP

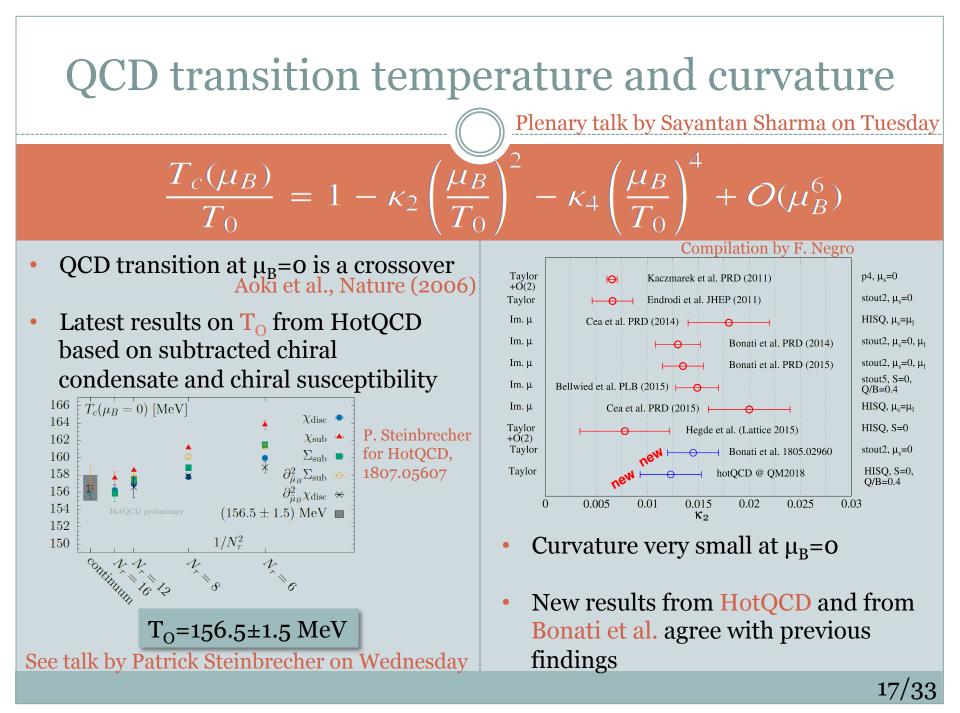


• Plan: integrate $\rho_{\rm B}$ and get p(T, $\mu_{\rm B}$)

QCD phase diagram

CURVATURE

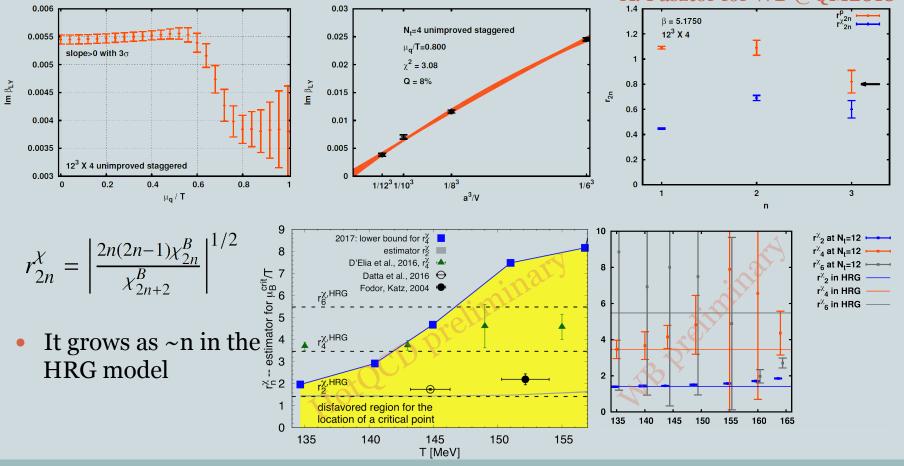
RADIUS OF CONVERGENCE OF TAYLOR SERIES



Radius of convergence of Taylor series

Plenary talk by Sayantan Sharma on Tuesday

For a genuine phase transition, we expect the ∞-volume limit of the Lee-Yang zero to be real
 A. Pasztor for WB @QM2018

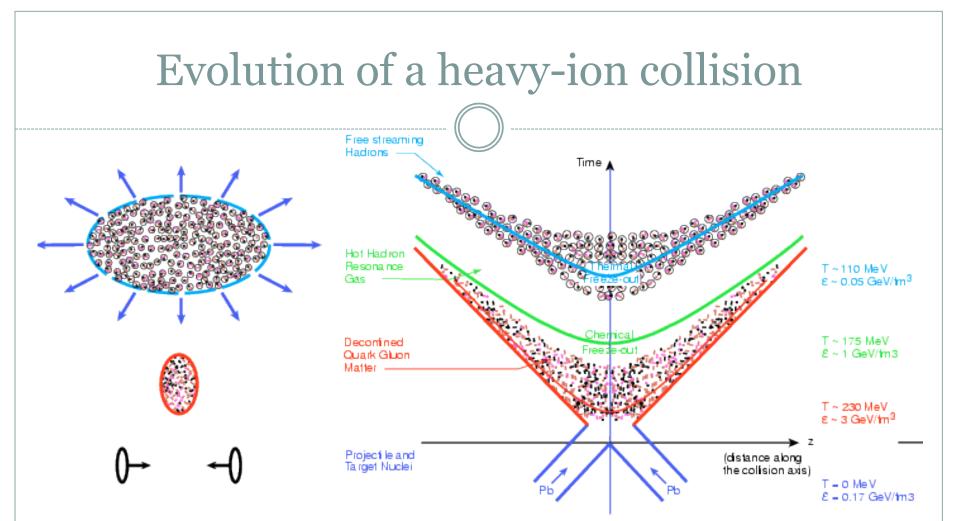


18/33

Fluctuations of conserved charges

COMPARISON TO EXPERIMENT: CHEMICAL FREEZE-OUT PARAMETERS

COMPARISON TO HRG MODEL: SEARCH FOR THE CRITICAL POINT



•Chemical freeze-out: inelastic reactions cease: the chemical composition of the system is fixed (particle yields and fluctuations)

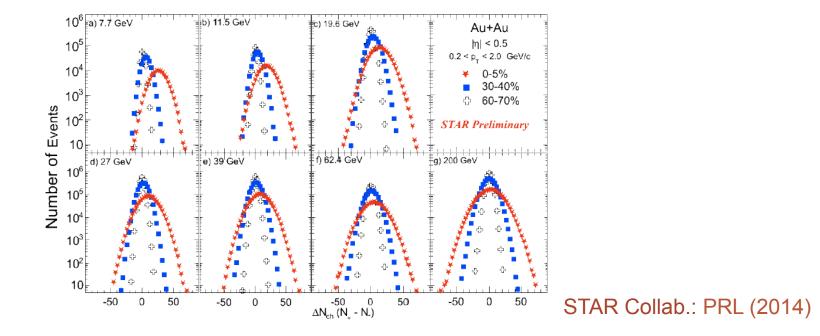
20

• Kinetic freeze-out: elastic reactions cease: spectra and correlations are frozen (free streaming of hadrons)

Hadrons reach the detector

Distribution of conserved charges

- Consider the number of electrically charged particles NQ
- Its average value over the whole ensemble of events is <N_Q>
- In experiments it is possible to measure its event-by-event distribution



Fluctuations on the lattice

----- (()) ------

- Fluctuations of conserved charges are the cumulants of their event-byevent distribution
- Definition: $\chi^{BSQ}_{lmn} = \frac{\partial^{l+m+n}p/T^4}{\partial(\mu_B/T)^l\partial(\mu_S/T)^m\partial(\mu_Q/T)^n}$.
- They can be calculated on the lattice and compared to experiment
- variance: $\sigma^2 = \chi_2$ Skewness: $S = \chi_3/(\chi_2)^{3/2}$ Kurtosis: $\kappa = \chi_4/(\chi_2)^2$ $S\sigma = \chi_3/\chi_2$ $\kappa\sigma^2 = \chi_4/\chi_2$
 - $M/\sigma^2 = \chi_1/\chi_2 \qquad \qquad S\sigma^3/M = \chi_3/\chi_1$

Things to keep in mind

- Effects due to volume variation because of finite centrality bin width
 - Experimentally corrected by centrality-bin-width correction method V. Skokov et al., PRC (2013), P. Braun-Munzinger et al., NPA (2017),
- Finite reconstruction efficiency V. Begun and M. Mackowiak-Pawlowska (2017)
 - Experimentally corrected based on binomial distribution
- Spallation protons
 - Experimentally removed with proper cuts in p_{T}
- Canonical vs Gran Canonical ensemble
 - Experimental cuts in the kinematics and acceptance
- Baryon number conservation
 - Experimental data need to be corrected for this effect
- Proton multiplicity distributions vs baryon number fluctuations

 M. Asakawa and M. Kitazawa, PRC(2012), M. Nahrgang et al., 1402.1238
 Recipes for treating proton fluctuations
- Final-state interactions in the hadronic phase
 - Consistency between different charges = fundamental test

A.Bzdak, V.Koch, PRC (2012)

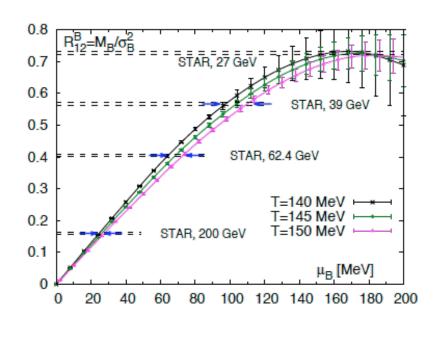
V. Koch, S. Jeon, PRL (2000)

J.Steinheimer et al., PRL (2013)

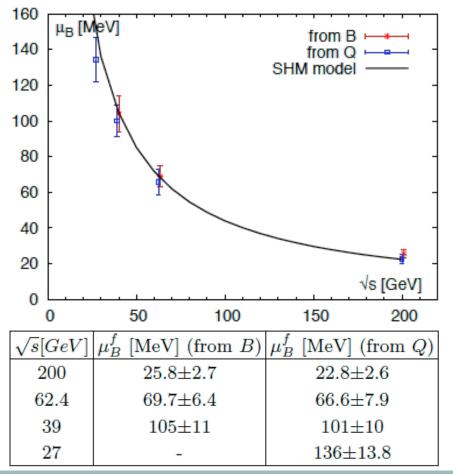
P. Braun-Munzinger et al., NPA (2017)

Consistency between freeze-out of B and Q

Independent fit of of R₁₂^Q and R₁₂^B: consistency between freeze-out chemical potentials
 160

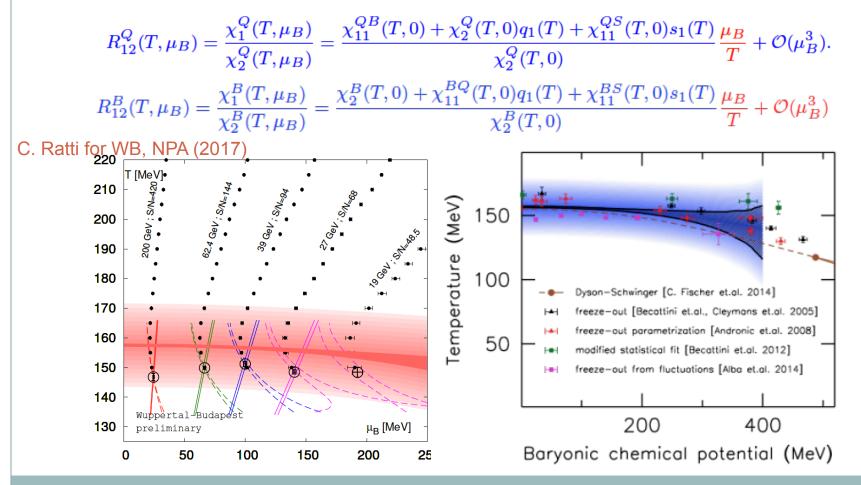


WB: PRL (2014) STAR collaboration, PRL (2014)



Freeze-out line from first principles

• Use T- and μ_B -dependence of R_{12}^{Q} and R_{12}^{B} for a combined fit:



25/33

Kaon fluctuations on the lattice

J. Noronha-Hostler, C.R. et al., 1607.02527

Lattice QCD works in terms of conserved charges

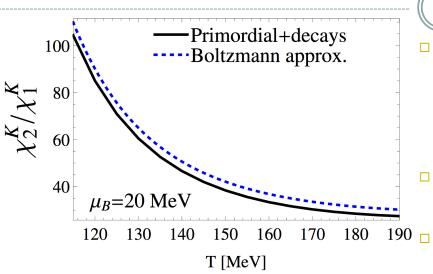
- Challenge: isolate the fluctuations of a given particle species
- Assuming an HRG model in the Boltzmann approximation, it is possible to write the pressure as:

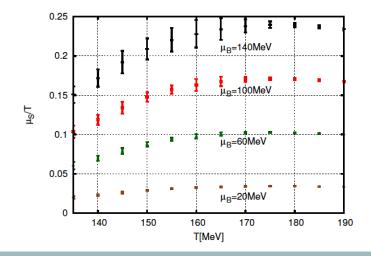
$$P(\hat{\mu}_B, \hat{\mu}_S) = P_{00}^{BS} + P_{10}^{BS} \cosh(\hat{\mu}_B) + P_{01}^{BS} \cosh(\hat{\mu}_S) + P_{11}^{BS} \cosh(\hat{\mu}_B - \hat{\mu}_S) + P_{12}^{BS} \cosh(\hat{\mu}_B - 2\hat{\mu}_S) + P_{13}^{BS} \cosh(\hat{\mu}_B - 3\hat{\mu}_S)$$

Kaons in heavy ion collisions: primordial + decays

Idea: calculate χ₂^κ/χ₁^κ in the HRG model for the two cases: only primordial kaons in the Boltzmann approximation vs primordial + resonance decay kaons

Kaon fluctuations on the lattice





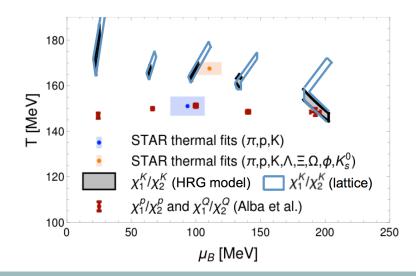
J. Noronha-Hostler, C.R. et al., forthcoming

 Boltzmann approximation works well for lower order kaon fluctuations

$$\frac{\chi_2^{\mathcal{K}}}{\chi_1^{\mathcal{K}}} = \frac{\cosh(\hat{\mu}_{\mathcal{S}} + \hat{\mu}_{\mathcal{Q}})}{\sinh(\hat{\mu}_{\mathcal{S}} + \hat{\mu}_{\mathcal{Q}})}$$

 $\chi_2^{\kappa}/\chi_1^{\kappa}$ from primordial kaons + decays is very close to the Boltzmann approximation

 μ_S and μ_Q are functions of T and μ_B to match the experimental constraints:



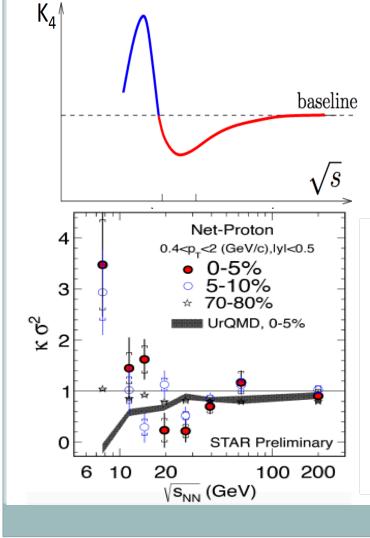
Fluctuations at the critical point

M. Stephanov, PRL (2009).

• Correlation length near the critical point $\xi \sim |T - T_c|^{-\nu}$ where $\nu > 0$

$$\begin{aligned} \chi_2 &= VT\xi^2\\ \chi_3 &= 2VT^{3/2}\hat{\lambda}_3\xi^{9/2}\\ \chi_4 &= 6VT^2[2\hat{\lambda}_3^2 - \hat{\lambda}_4]\xi^7 \end{aligned}$$

- Fluctuations are expected to diverge at the critical point
- Fourth-order fluctuations should have a non-monotonic behavior
- Preliminary STAR data seem to confirm this
- Can we describe this trend with lattice QCD?



Fluctuations along the QCD crossover

P. Steinbrecher for HotQCD, 1807.05607

Net-baryon variance

Disconnected chiral susceptibility

$$\frac{\sigma_B^2(T_c(\mu_B), \mu_B) - \sigma_B^2(T_0, 0)}{\sigma_B^2(T_0, 0)} = \lambda_2 \left(\frac{\mu_B}{T_0}\right)^2 + \lambda_4 \left(\frac{\mu_B}{T_0}\right)^4 + O(\mu_B^6)$$

$$\frac{1.2}{1.0} \frac{\sigma_B^2(T_c(\mu_B), \mu_B) / \sigma_B^2(T_0, 0) - 1}{\mathcal{O}(\mu_B^4)} = n_S = 0, \frac{n_Q}{n_B} = 0.4$$

$$\frac{O(\mu_B^4)}{(\mu_B^2)} = n_S = 0, \frac{n_Q}{n_B} = 0.4$$

$$\frac{O(\mu_B^2)}{(\mu_B^2)} = 0.4$$

$$\frac{HetQCD \text{ preliminary}}{\mu_B \text{ [MeV]}}$$

$$\frac{O(\mu_B^2)}{(\mu_B^2)} = 0.4$$

$$\frac{\mu_B \text{ [MeV]}}{(\mu_B^2)} = 0.4$$

- Expected to be larger than HRG model result near the CP
- No sign of criticality

See talk by Patrick Steinbrecher on Wednesday

$$\chi_{sub} \equiv \frac{T}{V} m_s \left(\frac{\partial}{\partial m_u} + \frac{\partial}{\partial m_d} \right) \left[m_s (\Sigma_u + \Sigma_d) - (m_u + m_d) \Sigma_s \right]$$

$$100.0$$

$$80.0$$

$$80.0$$

$$60.0$$

$$40.0$$

$$Hot QCD preliminary$$

$$N_{\tau} = 8, \ \mathcal{O}(\mu_B^6)$$

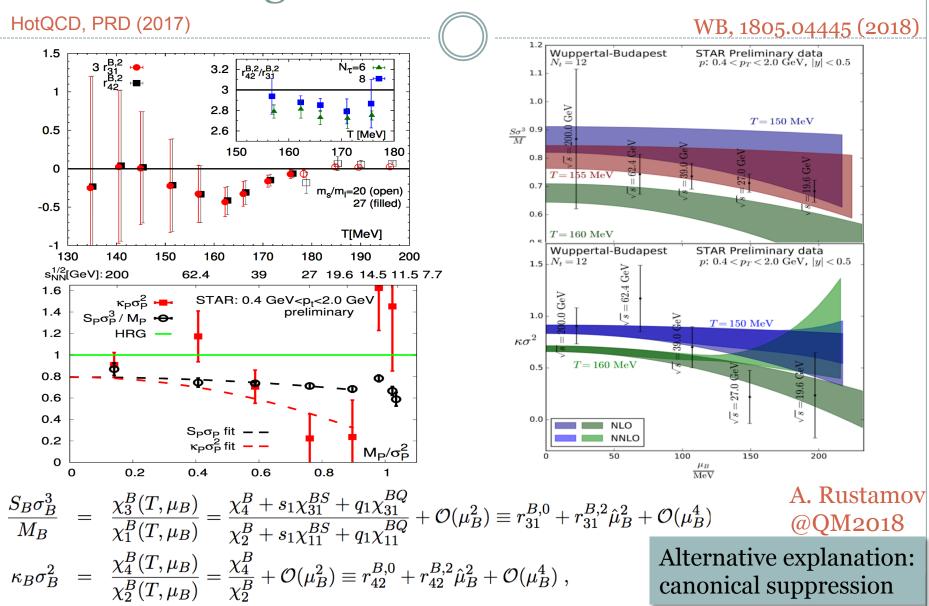
$$n_S = 0, \ \frac{n_Q}{n_B} = 0.4$$

$$T \ [MeV]$$

$$135 \quad 145 \quad 155 \quad 165 \quad 175 \quad 185 \quad 195$$

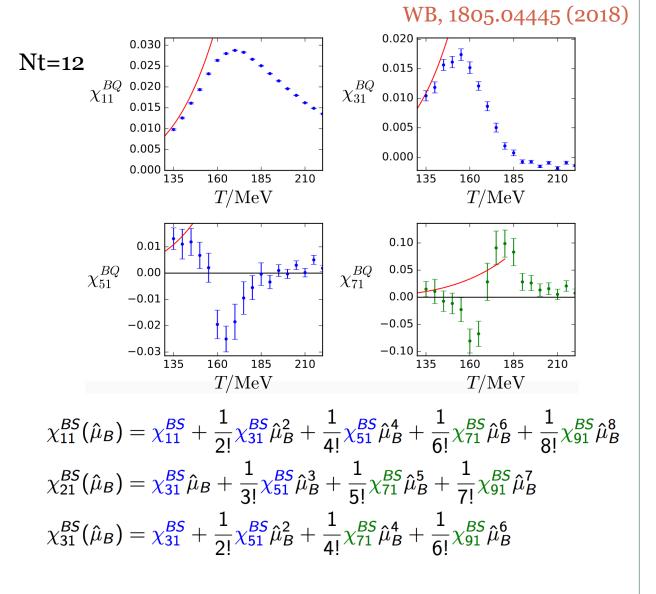
- Peak height expected to increase near the CP
- No sign of criticality

Higher order fluctuations



Off-diagonal correlators

- Simulation of the lower order correlators at imaginary µ_B
- Fit to extract higher order terms
- Results exist also for BS, QS and BQS correlators

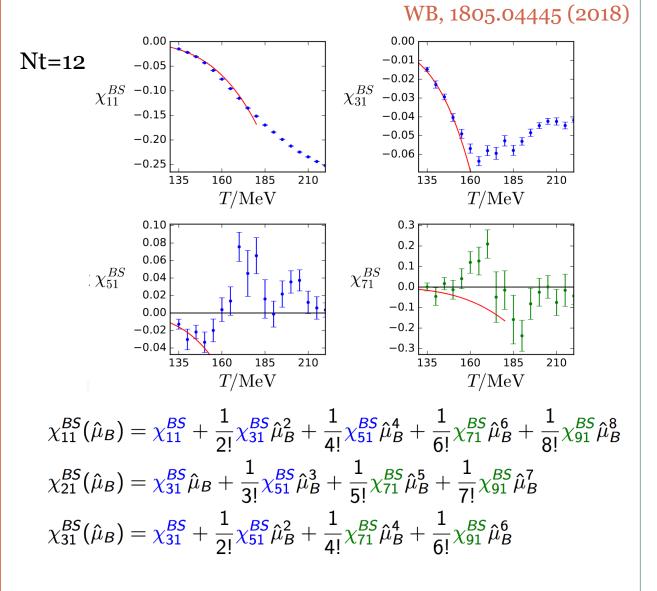


Forthcoming experimental data at RHIC

See talk by Jana Guenther on Wednesday

Off-diagonal correlators

- Simulation of the lower order correlators at imaginary µ_B
- Fit to extract higher order terms
- Results exist also for BS, QS and BQS correlators

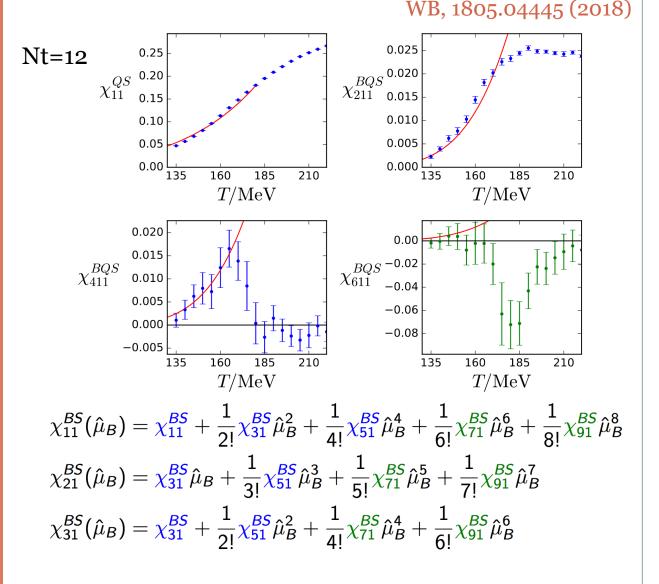


Forthcoming experimental data at RHIC

See talk by Jana Guenther on Wednesday

Off-diagonal correlators

- Simulation of the lower order correlators at imaginary μ_B
- Fit to extract higher order terms
- Results exist also for BS, QS and BQS correlators



Forthcoming experimental data at RHIC

See talk by Jana Guenther on Wednesday

Other approaches I did not have time to address

- Reweighting techniques
- Canonical ensemble

(Fodor & Katz)

- (Alexandru et al., Kratochvila, de Forcrand, Ejiri, Bornyakov, Goy, Lombardo, Nakamura)
- Density of state methods

(Fodor, Katz & Schmidt, Alexandru et al.)

• Two-color QCD

(ITEP Moscow lattice group, Kogut et al., S. Hands et al., von Smekal et al.)
Scalar field theories with complex actions

(See talk by M. Ogilvie on Tuesday)

Complex Langevin

(see talks by D. Sinclair, S. Tsutsui, F. Attanasio, Y. Ito, A. Joseph on Monday)

• Lefshetz Thimble

(see talks by K. Zambello, S. Lawrence, N. Warrington, H. Lamm on Monday)

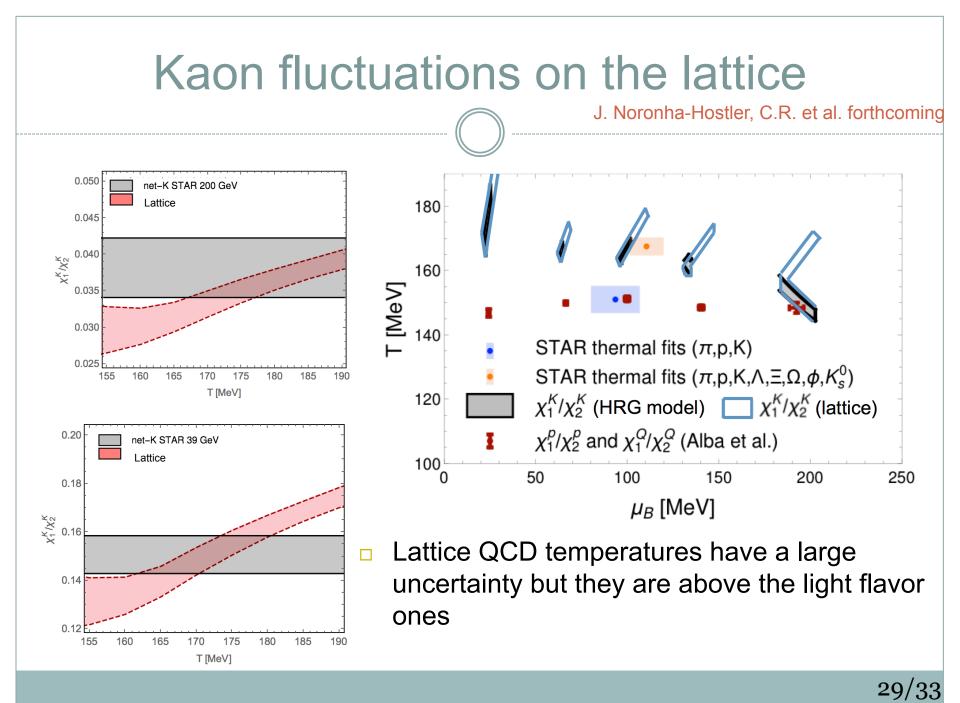
• Phase unwrapping (see talks by G. Kanwar and M. Wagman on Friday)

Conclusions

• Need for quantitative results at finite-density to support the experimental programs

- Equation of state
- Phase transition line
- Fluctuations of conserved charges
- Current lattice results for thermodynamics up to $\mu_B/T \le 2$
- Extensions to higher densities by means of lattice-based models
- No indication of Critical Point from lattice QCD in the explored μ_{B} range

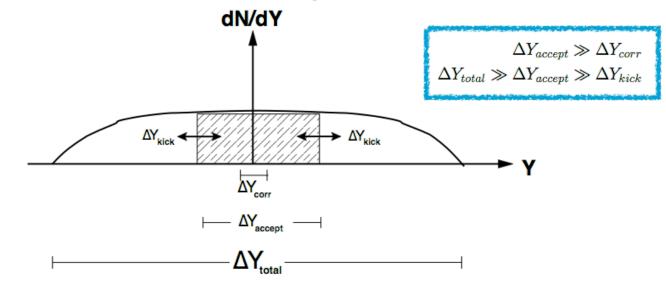
Backup slides



Fluctuations of conserved charges?

If we look at the entire system, none of the conserved charges will fluctuate

*By studying a sufficiently small subsystem, the fluctuations of conserved quantities become meaningful



□ △Ytotal: range for total charge multiplicity distribution

- \Box Δ Yaccept: interval for the accepted charged particles
- \Box Δ Ykick: rapidity shift that charges receive during and after hadronization

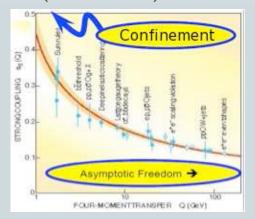
QCD matter under extreme conditions

To address these questions we need fundamental theory and experiment

Theory: Quantum Chromodynamics

- QCD is the fundamental theory of strong interactions
- It describes interactions among quarks and gluons

$$L_{QCD} = \sum_{i=1}^{n_f} \overline{\psi}_i \gamma_{\mu} \left(i\partial^{\mu} - gA_a^{\mu} \frac{\lambda_a}{2} \right) \psi_i - m_i \overline{\psi}_i \psi_i - \frac{1}{4} \sum_a F_a^{\mu\nu} F_a^{\mu\nu}$$



Experiment: heavy-ion collisions

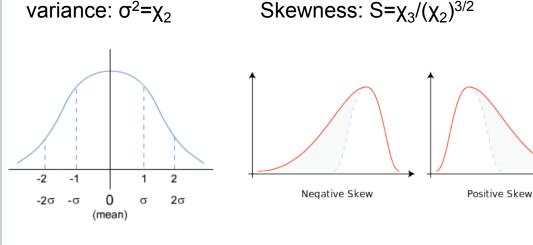
- Quark-gluon plasma (QGP) discovery at RHIC and the LHC
- QGP is a strongly interacting (almost) perfect fluid

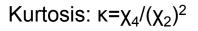
Cumulants of multiplicity distribution

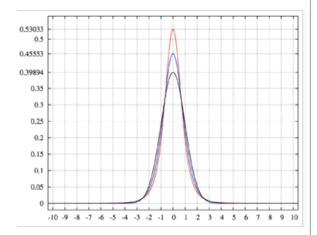
- Deviation of N_Q from its mean in a single event: $\delta N_Q = N_Q \langle N_Q \rangle$
- The cumulants of the event-by-event distribution of NQ are:

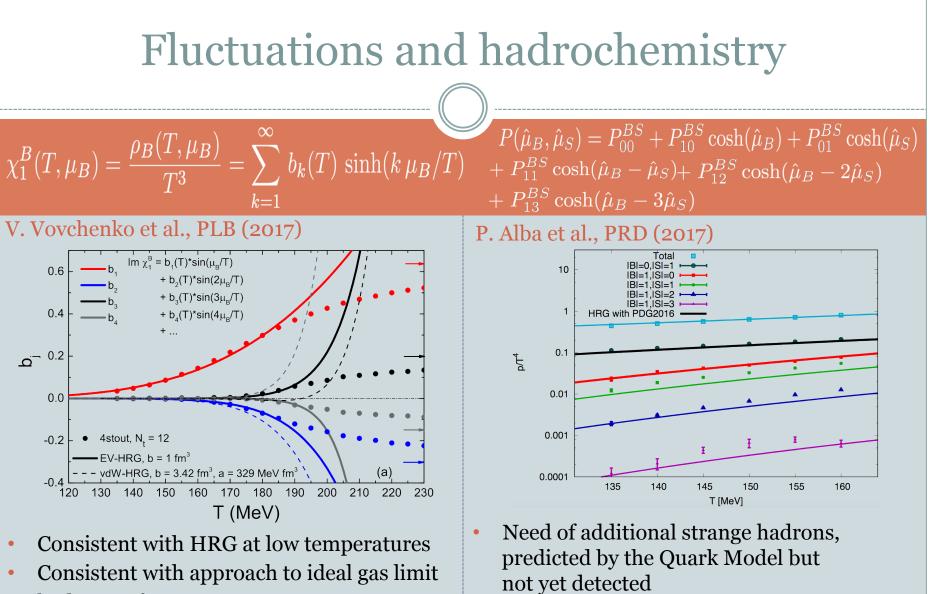
 $\chi_2 = <(\delta NQ)^2 > \chi_3 = <(\delta NQ)^3 > \chi_4 = <(\delta NQ)^4 > -3 < (\delta NQ)^2 >^2$

• The cumulants are related to the central moments of the distribution by:







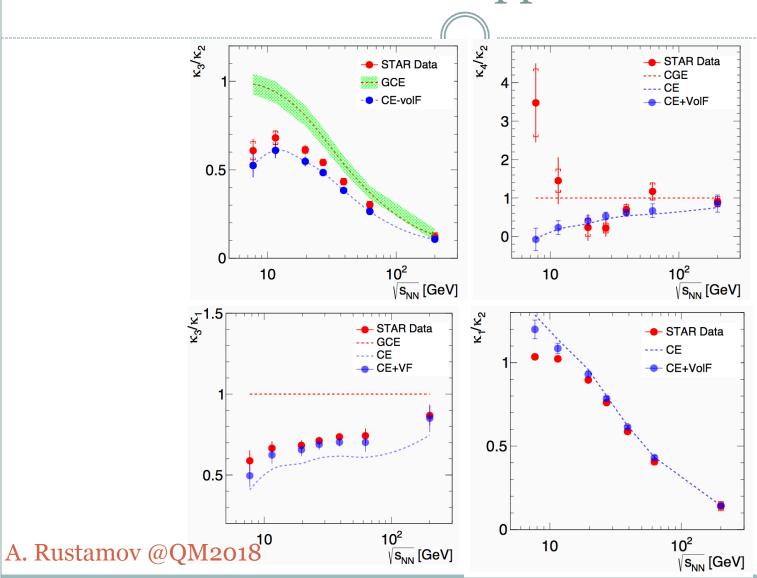


- b₂ departs from zero at T~160 MeV
- Deviation from ideal HRG

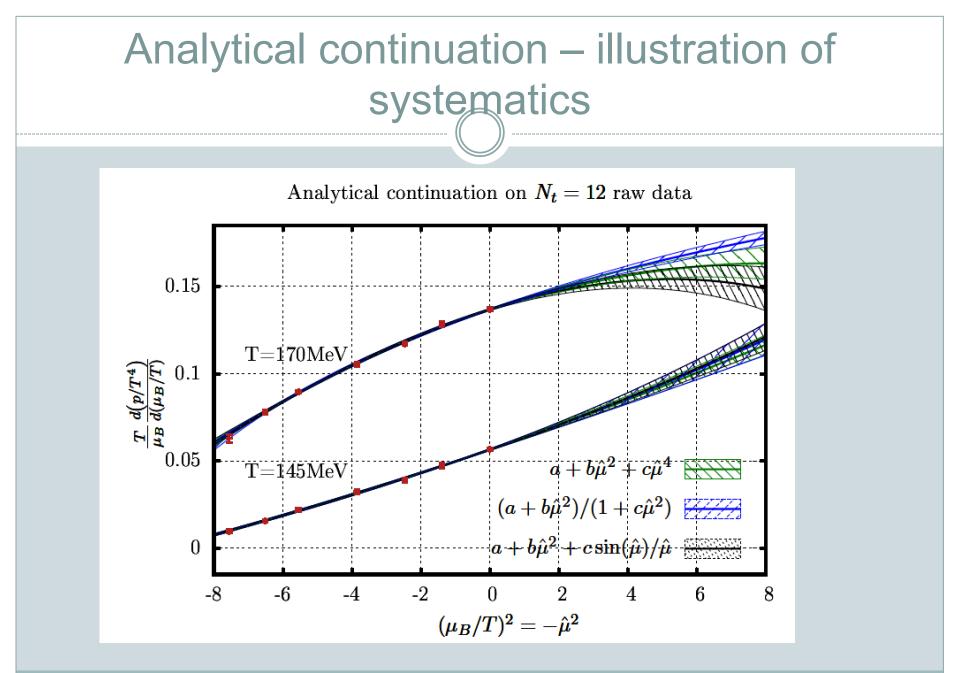
(see talk by J. Glesaaen on Friday)

First pointed out in Bazavov et al., PRL(2014)

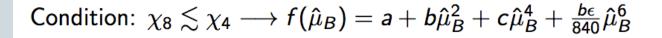
Canonical suppression



above 11.5 GeV CE suppression accounts for measured deviations from GCE



Analytical continuation – illustration of systematics



Analytical continuation on $N_t = 12$ raw data

