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Context of project

Unitary evolution on a quantum computer

Digital quantum computers (QC): Unitary gates „ e´itĤ of
some Ĥ.
Want to simulate a lattice
gauge theory (LGT)
How to map its Ĥ and its
Hilbert space H on to QC?

Near-term QC architectures will have very limited capabilities
How to most wisely spend those qubits?
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Context of project

Previous work

Arena for these questions is the Hamiltonian formalism of LGT.

Hamiltonian LGT [Kogut and Susskind 1975] studies go back as
far as Wilson’s Euclidean lattice path integral

For modern discussion in context of QC see, e.g., Byrnes and
Yamamoto 2006; Wiese 2014; Zohar et al. 2017; P. Dreher’s talk

Taking pure U(1) LGT, we seek most economical construction
Leads directly to duality transformation

Dualities also extensively studied in LGTs and many other areas
See, e.g., Anishetty and Sharatchandra 1990; Mathur 2006;
Anishetty and Sreeraj 2018

D.B. Kaplan & J.R. Stryker (INT@UW) Gauss’s Law, U(1) & Duality (1806.08797) 2018-07-25 LATTICE 18 4



Context of project

Previous work

Arena for these questions is the Hamiltonian formalism of LGT.
Hamiltonian LGT [Kogut and Susskind 1975] studies go back as
far as Wilson’s Euclidean lattice path integral

For modern discussion in context of QC see, e.g., Byrnes and
Yamamoto 2006; Wiese 2014; Zohar et al. 2017; P. Dreher’s talk

Taking pure U(1) LGT, we seek most economical construction
Leads directly to duality transformation

Dualities also extensively studied in LGTs and many other areas
See, e.g., Anishetty and Sharatchandra 1990; Mathur 2006;
Anishetty and Sreeraj 2018

D.B. Kaplan & J.R. Stryker (INT@UW) Gauss’s Law, U(1) & Duality (1806.08797) 2018-07-25 LATTICE 18 4



Context of project

Previous work

Arena for these questions is the Hamiltonian formalism of LGT.
Hamiltonian LGT [Kogut and Susskind 1975] studies go back as
far as Wilson’s Euclidean lattice path integral

For modern discussion in context of QC see, e.g., Byrnes and
Yamamoto 2006; Wiese 2014; Zohar et al. 2017; P. Dreher’s talk

Taking pure U(1) LGT, we seek most economical construction
Leads directly to duality transformation

Dualities also extensively studied in LGTs and many other areas
See, e.g., Anishetty and Sharatchandra 1990; Mathur 2006;
Anishetty and Sreeraj 2018

D.B. Kaplan & J.R. Stryker (INT@UW) Gauss’s Law, U(1) & Duality (1806.08797) 2018-07-25 LATTICE 18 4



Context of project

Previous work

Arena for these questions is the Hamiltonian formalism of LGT.
Hamiltonian LGT [Kogut and Susskind 1975] studies go back as
far as Wilson’s Euclidean lattice path integral

For modern discussion in context of QC see, e.g., Byrnes and
Yamamoto 2006; Wiese 2014; Zohar et al. 2017; P. Dreher’s talk

Taking pure U(1) LGT, we seek most economical construction
Leads directly to duality transformation

Dualities also extensively studied in LGTs and many other areas
See, e.g., Anishetty and Sharatchandra 1990; Mathur 2006;
Anishetty and Sreeraj 2018

D.B. Kaplan & J.R. Stryker (INT@UW) Gauss’s Law, U(1) & Duality (1806.08797) 2018-07-25 LATTICE 18 4



Recap: Conventional Hamiltonian LGT

Roadmap

1 Context of project

2 Recap: Conventional Hamiltonian LGT

3 The emergence of duality
Original theory set-up
Reconstruction begets duality

D.B. Kaplan & J.R. Stryker (INT@UW) Gauss’s Law, U(1) & Duality (1806.08797) 2018-07-25 LATTICE 18 5



Recap: Conventional Hamiltonian LGT

Conventional construction

Periodic Boundary

eigenbasis

Period ic Bou ndary

Periodic Boundary

eigenbasis

..
..

..
..

..
..

..
..

..
..

Period ic Bou ndary

Link operators raise
or lower electric
field:

Kogut-Susskind Hamiltonian:

HE “
1

2as

ÿ

`

g̃2t Ê2
` , HB “

1

2as

«

1

g̃2s

ÿ

p

´

2´ P̂p ´ P̂
:
p

¯

ff

HE `HB
asÑ0
ÝÑ H “

1

2

ż

dDx pE2 `B2q
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Recap: Conventional Hamiltonian LGT

Issues with standard formulation

1 Must impose Gauss’s law on kets [Kogut and Susskind 1975;
Zohar et al. 2017]

Most directions in H unphysical.

Danger of leaving Hphys due to errors, noise
If truncating states (by e.g. |E`| ď Λ in Up1q), makes awkward
constraints around cutoff.

2 Electric fluctuations large at weak coupling
Expect large E fluctuations as as Ñ 0 in D “ 2 gauge theories and
in asymptotically-free theories in D “ 3
Rate of convergence as as Ñ 0 unclear when truncating on E
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The emergence of duality Original theory set-up

Starting point for original theory

We start with a symmetric Hamiltonian,1

Ĥ “ ĤE ` ĤB ,

ĤB “
1

2as

«

1

g̃2s

ÿ

p

´

2´ P̂p ´ P̂
:
p

¯

ff

,

ĤE “
1

2as

«

g̃2t
ξ2

ÿ

`

´

2´ Q̂` ´ Q̂
:

`

¯

ff

.

Hilbert space H and ĤB are conventional

We exponentiated E:

Q̂` ” eiξÊ` .

Think of ξ ! 1 as at{as.

1Different, but similar to [Horn, Weinstein, and Yankielowicz 1979].
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The emergence of duality Reconstruction begets duality

Hilbert space generation

eigenbasis Powers of plaquettes

A basis for Hphys is generated by acting with plaquettes on trivial state.

|Ωy ” b` |0y` ,

|ALy ”
ź

p

´

P̂p

¯Ap

|Ωy .

D “ 2 for this talk.
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The emergence of duality Reconstruction begets duality

Hilbert space transcription

Take A ’s further: Use as quantum numbers

L

L*

Notice:
Plaquettes p „ dual sites n‹.
ñ Ap is scalar field An‹ on L‹.

E` on a link „ difference ∆An‹

along a dual link

1.) Identify

ź

p

´

P̂p

¯Ap

ˇ

ˇ

ˇ

ˇ

ˇ

Ap“An‹ppq

|Ωy ÐÑ bn‹ |An‹y
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The emergence of duality Reconstruction begets duality

Hilbert space transcription

2. Define identical local orthonor-
mal bases, t|An‹yu, which diago-
nalize

Ûn‹ ”

8
ÿ

An‹“´8

|An‹y e
iξAn‹ xAn‹ | .

3. Global basis states:

|AL‹y ” bn‹ |An‹y

4. (Local) raising operators:

Q̂n‹ ”

8
ÿ

An‹“´8

|An‹ ` 1y xAn‹ | .

Redundancy:

… Same electric fields!

Since
ś

p

´

P̂p

¯

“ 1̂, must impose

ź

n‹

Q̂n‹ |AL‹y “ |AL‹y

on H‹. This is magnetic Gauss
law.
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The emergence of duality Reconstruction begets duality

The dual formulation

Original Dual

plaquette, p Ø site, n‹

plaquette operator, P̂p Ø site raising operator, Q̂n‹

link ` Ø (perpendicular) link, `‹

field square, E2
` Ø field laplacian, Û :

n‹B
`
i B

´
i Ûn‹

We have xA 1
L| Ĥ |ALy “ xA

1
L‹ |H |AL‹y for the dual Hamiltonian

Ĥ “
1

2as

ÿ

n‹

„

1

g̃2s

´

2´ Q̂n‹ ´ Q̂:
n‹

¯

´
g̃2t
ξ2
a2sÛ

:
n‹B

`
i B

´
i Ûn‹



, pD “ 2q

(subject to magnetic Gauss).
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The emergence of duality Reconstruction begets duality

Solving the dual Gauss law:

1 Fix one An‹ “ 0.
ë Break translational symmetries
ë Ĥ becomes nonlocal

Truncation can be done as
|An‹ | ď Λ

2 Restrict states to subspace on
which

ś

n‹ Q̂n‹ “ 1

Truncation can be done on
argument of Qn‹ phases
(equivalent to regulating B in
original theory)

L*
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Summary

Summary

1 Duality transformation naturally emerges from building ∇ ¨E “ 0
into H

2 Formulating and truncating dual theory preferable for weak
coupling

Current/future work
Putting in matter

Want: Local Hilbert spaces, Ĥ built from local operators
How much redundancy?

Extend to non-Abelian
Local field description possible with non-Abelian lattice duality?
(prepotential formalism)
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Appendix Further details

E fluctuations at weak coupling

Analogy to SHO: (electric field is momentum, gauge field is coordinate)

HE “
1

2as

ÿ

`

g̃2t Ê2
` „

1

2m
p̂2

HB “
1

2as

«

1

g̃2s

ÿ

p

´

2´ P̂p ´ P̂
:
p

¯

ff

„
k

2
x̂2

Read off
m „ 1{g̃2t , k „ 1{g̃2s

By dimensional analysis,

xp̂2y9
?
mk „

1

g̃tg̃s
, xx̂2y9

1
?
mk

„ g̃tg̃s
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Appendix Further details

Topological sectors

Original formulation (on periodic lattice) has many gauge-invariant
states decoupled from |Ωy

Topological Polyakov loops are gauge-invariant
Define class representatives,

|νy ”
d
ź

i“1

´

Ŵ pCiq
¯νi
|0y , νi P Z .

with Ŵ pCiq the product of oriented Û`’s along a closed loop Ci
wrapping direction i.
An Ĥ containing only elementary Wilson loops cannot cause
transitions

Fully general state:

|A yν “
ź

p

´

P̂p

¯Ap

|νy , Ap P Z
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Appendix Further details

Dual Hamiltonian with topology

Since ν ’s don’t talk to each other, we fix ν. We must adapt H to get
the right matrix elements:

H Ñ H ν “ HB `H ν
E , (HB unchanged)

H ν
E “

1

2as

ÿ

n‹

„

´
g̃2t
ξ2
a2sÛ

:
n‹∆Ûn‹



, pD “ 2q

Here we have generalized to a covariant Laplacian ∆ “ Σ2
i“1D

`
i D

´
i ,

D`1 Fn‹ “ pWtn‹,n‹´e1uFn‹´e1 ´ Fn‹q{as ,

D`2 Fn‹ “ pWtn‹,n‹`e2uFn‹`e2 ´ Fn‹q{as ,

involving the (dual lattice) connection

W`‹ “

#

eiξνi , if ` P Ci ;

1, otherwise
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Appendix Further details

Dual Hamiltonian in d “ 3 ` 1

For D “ 3 spatial dimensions, pØ `‹ (rather than pØ n‹).

We define Q̂`‹ ’s and Û`‹ ’s on local dual link Hilbert spaces by
direct analogy.
Then

Ĥν “
1

2as

„

ÿ

`‹

1

g̃2s

´

2´ Q̂`‹ ´ Q̂:

`‹

¯

`
g̃2t
ξ2

ÿ

p‹

´

2´
´

Wp‹P̂p‹ ` h.c.
¯¯



pD “ 3q.

Dual plaquettes P̂p‹ are usual products of Û`‹ ’s, and

Wp‹ “

#

eiξνi , if ` P Ci ;

1, otherwise .
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