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•  walking 𝛽-functions? 𝜒SB phase? which models are potential dilaton candidates?

•  linear 𝜎-model with low mass m𝜋 ≳ m𝜎  requires extensions ➙ dilaton? 

•  dilaton signatures in the p-regime of the sextet model  2016 Bernardfest: Shamir explains 
to me the problem with capturing the dilaton: NDA does not work. 2017 BU workshop: while Iwe are 
struggling with the sextet analysis, Appelquist et al.: it works for nf=8 anyway. Hmmm …. 

•  dilaton signatures in the 𝜀-regime ? 

•  Simulating the effective potential of the composite scalar     

http://dx.doi.org/10.1103/PhysRevD.94.091501
http://arxiv.org/abs/arXiv:1712.08594
http://arxiv.org/abs/arXiv:1710.09262
http://arxiv.org/abs/arXiv:1711.04833
http://arxiv.org/abs/arXiv:1711.05299


testing scale-dependent BSM gauge couplings and 𝛽-functions:
Probing technicolor theories with staggered fermions Kieran Holland

Figure 1: The conformal window for SU(N) gauge theories with Nf techniquarks in various representations,

from [3]. The shaded regions are the windows, for fundamental (gray), 2-index antisymmetric (blue), 2-index

symmetric (red) and adjoint (green) representations.

1. Introduction

The LHC will probe the mechanism of electroweak symmetry breaking. A very attractive

alternative to the standard Higgs mechanism, with fundamental scalars, involves new strongly-

interacting gauge theories, known as technicolor [1, 2]. Such models avoid difficulties of theories

with scalars, such as triviality and fine-tuning. Chiral symmetry must be spontaneously broken in

a technicolor theory, to provide the technipions which generate the W± and Z masses and break

electroweak symmetry. Although this duplication of QCD is appealing, precise electroweak mea-

surements have made it difficult to find a viable candidate theory. It is also necessary to enlarge the

theory (extended technicolor) to generate quark masses, without generating large flavor-changing

neutral currents, which is challenging.

Technicolor theories have lately enjoyed a resurgence, due to the exploration of various tech-

niquark representations [3]. Feasible candidates have fewer new flavors, reducing tension with

electroweak constraints. If a theory is almost conformal, it is possible this generates additional

energy scales, which could help in building the extended technicolor sector. There are estimates

of which theories are conformal for various representations, shown in Fig. 1. For SU(N) gauge

theory, if the number of techniquark flavors is less than some critical number, conformal and chiral

symmetries are broken and the theory is QCD-like. For future model-building, it is crucial to go be-

yond these estimates and determine precisely where the conformal windows are. There have been

a number of recent lattice simulations of technicolor theories, attempting to locate the conformal

windows for various representations [4, 5, 6, 7, 8].

2. Dirac eigenvalues and chiral symmetry

The connection between the eigenvalues ! of the Dirac operator and chiral symmetry breaking
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• with established 𝜒SB, sextet model closest to CW in explored range of  𝛽-function 

• nf=10 is not conformal in explored 𝛽-function range of our analysis   Dani Nogradi 

• nf=12 is not conformal in explored 𝛽-function range of our analysis   new check here 

• nf=13 is conformal      Kieran Holland 

• sextet SU(2) flavor group simplest with light 0++ scalar  —  dilaton analysis

light 0++ scalar 
emerging 
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LatHC PLB B779 (2018) 230-236  arXiv:1710.09262

confirmed with new updated results:


L=32 -> L=64 step at three tuned g^2 targets

adds further evidence against nf=12 IRFP 


staggered “non-universality argument” based on 
3d spin models is misguided 

New Boulder-BU poster with DW fermions so far 
is not in contradiction with our Nf=12 analysis

+ a^4/L^4 term

nf=12 new

nf=12 new

consistent with published

http://arxiv.org/abs/arXiv:1710.09262


light 0++ scalar and spectrum   sextet model   LatHC 
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Mt/s = at/s + bt/s m   (fitting functions)     β=3.2     323× 64

F       = 0.0279 (4) setting the EWSB scale

MH/F ~ 1−3 range

 Triplet and singlet masses from 0++ correlators  

0++ is tracking the Goldstone pion
 

mπ
2 ≥ mσ

2   

Light scalar below mass 700 GeV to be 
described by linear sigma model ?
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• taste broken goldstone spectrum 

• 6 parameters describe 10 data 

• B and F are inconsistent in the fits 

• cutoff effect is “input” 

chiPT  difficulties?   sextet   B and F inconsistency
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generalize linear O(4) 𝜎-model in low mass                 range  
➞ nonlinear 𝜎-model, perhaps dilaton?
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linear 𝜎-model in simulations in low mass range with m𝜋 ≳ m𝜎 requires extension 
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2 ≥ 3mπ
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2   1-loop relation

triviality analysis 

(and loop expansion) 

circa 1987-1988 
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σ -model limit (SM):  a = b = d3 = d4 = 1     (or more relaxed in χSB framework)
dilaton model limit:   a = b2,  b3 = 0            scale symmetry breaking set by  fd     (in far IR χSB can be triggered)

π σ

fπ

extended EFT of σ-𝜋 entanglement in the BSM Higgs sector:

Mπ , Fπ , Mσ  are calculated to 1-loop:  extended SU(2) flavor chiral dynamics

We have been analyzing the small pion mass region in the Mπ = 0.07- 0.015 range 

of the p-regime, also targeting the ε-regime 
linear sigma model limit in of χPT p-regime simulations requires very small pion masses
mπ ≪ mσ  not reached in p-regime simulations 

Soto et al.  targeting QCD

Nuclear Physics B 866 (2013) 270–292 

Sanino et al. added new terms for BSM

light 0++ scalar: 

σ-particle or dilaton? 

simplest dilaton Lagrangian is 
non-linear σ-model limit
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illustrate scope of the analysis

Low energy effective theory of the 𝜎(x) dilaton field and the 𝜋a(x) Goldstone bosons 
separated from the higher resonance states with SU(2) flavor in sextet model:

Appelquist et al. test Nf=8 fundamental rep and  
fit obsolete sextet data with paper and pencil!

test V ~  𝜒p  for large 𝜒 
Golterman and Shamir 
Appelquist et al.
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dictionary for the effective dilaton theory coupled to Goldstone pions:

we adapt Appelquist et al.  
notation for comparison



How do we test dilaton theory?  General scaling laws: Golterman and Shamir 

Appelquist et al. nf=8 tests
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order only in tripple 1/N expansion (Golterman/Shamir)
otherwise not determined 
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Markov Chain Monte Carlo on the Maximum Likelihood Function

full analysis in Ricky Wong talk

all is well?  cutoff-dependent γ * ?   if not, what γ  scale? 



• Chebyshev expansion of mode number 

• infinite volume limit from FSS 

• m -> 0 chiral limit at fixed a 

• a -> 0 continuum limit 

 mass anomalous dimension γ from Dirac spectrum: sextet data
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scaling test II: from V (χ ) ≈ χ p  large χ  asymptotic shape 

of the dilaton potential: (aMπ )2 ⋅(aFπ )2− p = B 

covariance matrix is used in the fits shown
cross check:  p and B generated from ensembles of  Fpi and Mpi 
at each m in Markov Chain Monte Carlo of the exact 
Maximum Likelihood Function without covariance matrix approx.

these fits are failing  (what did "the other sextet analysis" do?)
controlof loop effects? 
cutoff effects? not prime suspect
missing dilaton potential terms? 
limited FSS at Q=0?  not prime suspect
what is the definition and fit consistency of y and γ ?

full analysis in Ricky Wong talk
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The linear term in η can be removed by a small additional shift. This happened because the lowest

energy state is slightly shifted compared to the value v =
√

−µ2/λ. But more importantly, when we
expand the exponentials, we now find that the π(x)-field has gotten a small mass, small compared to
the mass of the η-field, and no longer has only derivative interactions. The π mass

m2
π ≈

2
√

2β

v
. (33)

is small and can be expanded in the small symmetry breaking parameter β. The particle corresponding
to it, is now called a pseudo-Goldstone boson. As long as the explicit symmetry breaking is small, we
can still use Goldstone’s theorem as a first approximation and then add the corrections systematically.
This is precisely what we do in ChPT when the light quark masses are explicitly included.

2.5 Spontaneous symmetry breaking in QCD

We already argued in Sect. 2.3 that the chiral symmetry of QCD cannot be realized in nature since
the predicted parity doublets do not occur. We thus expect the chiral symmetry to be realized in the
Nambu-Goldstone mode. What theoretical evidence do we have directly for this?

Most of the remainder of this paper is about the Goldstone bosons from the spontaneous chiral
symmetry breakdown and their properties. In this way, all those properties are strong indications that
the picture described below is correct. However let us first give the full theoretical arguments.

• It has been proven that the chiral symmetry is spontaneously broken in the limit of a large number
of colours and assuming confinement [31].

• The vector symmetries remain unbroken in a vectorlike symmetry as QCD [32].

• Assuming confinement, the anomalies in the effective low-energy theory must match those for the
underlying QCD theory. For two flavours, this can be done but not for three or more flavours.
We thus need spontaneous symmetry breaking in order to have a correct anomaly matching for
three or more flavours [33].

We thus believe that the flavour symmetry SU(nF )× SU(nF ) is spontaneously broken down to the
diagonal subgroup SU(nF )V = SU(nF )L+R also for the realistic case of three flavours. There are eight
broken generators and we thus expect eight Goldstone boson degrees of freedom. If we look at the
hadron spectrum there are eight natural candidates for this. The three pions, π0, π±, four kaons, K±,
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- Mixed regime RMT analysis: 

sea quarks earlier in p-regime this is changed now

spectrum in ϵ-regime


- taste breaking is handled in same framework 

James Osborne worked out


- thanks to James for the discussions and the 

opportunity for checking our software on the 

output of his code



dilaton “decoupling” in the 𝜀-regime

• simulations of the ε-regime are set up and running:


• staggered stout fermions at our medium fine lattice spacing


• dropping down from our lightest pion mass m*a ~ 0.07 in the p-regime


• one order of magnitude (2 orders of magnitude in the fermion mass)


• 64^4 lattice size running in the m=0.001- 0.00001 fermion mass range


• Mpi*L ~ 0.5 !! 


• F*L ~ 1 is  our projection  - important for ϵ-regime expansion




constraint effective potential

scalar field ϕ(x) elementary, or source of 
composite operator

probability distribution of order 
parameter in finite volume Ω

implementation with fermion fields:

composite 0++ scalar emergent from NJL: equivalent Yukawa model

jk, Lee Lin, Pietro Rossi, Yue Shen, NPB Proc. Suppl. 9 (1989) 99-104

HMC at fixed zero momentum mode of 
the scalar field



constraint effective potential

weak coupling test in 
Higgs-Yukawa model

jk, Kieran Holland
LatHC
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can we extend the analysis to gauge theories?  

constraint effective potential



Summary:    

•   sextet model is consistent with 𝜒SB from all angles we looked at

•   general EFT approach will change the 𝜒PT analysis

•   dilaton EFT is a new fresh look

•   dilaton signatures are problematic in sextet model 

•   sources of the problem? 

•   missing dilaton terms? scale dependent γ(λ)? loop control?

•   the ε-regime (RMT) is new opportunity for general EFT signatures!

•   constraint effective potential method


