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Introduction

In the last years, the gradient flow has become quite the popular tool
to work in Yang-Mills theories.

Computations in perturbation theory using the gradient flow,
however, are comparatively scarce, with results being obtained by
Lüscher for the running of the coupling at infinite volume, as well as
other relevant results by Harlander et al., by Ishikawa et al. or by
Dalla Brida et al.

In our case, our goal is to compute the running of the ’t Hooft
coupling constant in perturbation theory on the twisted torus, using a
particular choice of boundary conditions and choice of regularisation
that we will explain along this talk.
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Twisted boundary conditions

We considered a SU(N) pure gauge theory defined on an
asymmetrical d-dimensional torus with sides of length lµ in the
continuum, with twisted boundary conditions in dt dimensions and
periodic ones in the rest.

We chose to work in d = 4 and dt = 2, and used the following twist:

Aµ(x + lν ν̂) = ΓνAµ(x)Γ†ν , Γµ ∈ SU(N), k , lg = N2/dt ∈ Z
ΓµΓν = exp{2πiεµνk/lg}ΓνΓµ, ε01 = −ε10 = 1, εµν = 0 otherwise

In the periodic directions, the Γµ matrices are simply the identity.

Gonzalez-Arroyo et al ’83
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Choice of basis

A solution for those boundary conditions can be obtained bulding a
momentum-dependent basis Γ̂(q) for the fields from the Γµ matrices:

Aµ(x) = V−
1
2

′∑
q

Âµ(q)e iqx Γ̂(q), V =
∏
µ

lµ

As we picked k and N coprime, there are N2 independent Γ̂ matrices
from which to build a basis for the SU(N) fields. Tracelessness forces
us to exclude the identity, which eliminates zero modes (modulo N)
in the twisted directions. This is indicated by a prime in the sum.

In twisted directions, the momenta are quantised in terms of lµlg , and
in the rest in terms of lµ only. For maximum symmetry, we chose a
torus of length l in the twisted directions and l̃ = lg l in the rest, so
that all momenta are quantised equally: qµ = 2π l̃−1mµ, mµ ∈ Z:
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Gradient flow

To define the running coupling, we used the gradient flow.

We introduced a flow time parameter t and a gauge field Bµ(x , t),
along with the field strength and covariant derivative Gνµ and Dν :

Bµ (x , t = 0) = Aµ (x) , ∂tBµ (x , t) = DνGνµ (x , t) +ξDµ∂νBν (x , t)

For t > 0, observables built from the expectation values of B are
renormalised quantities, so we defined the ’t Hooft coupling as:

λTGF (l̃) = g2(l̃)N =
< t2E (t) >

NF(c)

∣∣∣∣
t=c2 l̃2/8

Where E (t) = 1
2Tr(G

2
µν(x , t)) is the action density of the theory,

F(c) was set up so that λTGF = λ0 +O(λ20), and c is a
scheme-defining parameter relating the energy scale to the size of the
torus: 1/µ =

√
8t = cl̃ Ramos ’14

Eduardo I. Bribian (IFT UAM-CSIC) Perturbative Running of λTGF July 27, 2018 5 / 18



Perturbative expansion

The procedure is analogous to the infinite volume one (Lüscher ’10),
only integrals are replaced by sums and our choice of basis comes
with different structure constants [Γ̂(p), Γ̂(q)] = iF (p, q)Γ̂(p + q):

F (p, q) = −
√

2

N
sin(

1

2
θµνpµqν), θµν =

k̄ l̃2

2πlg
ε̃µν ,

kk̄ = 1 mod lg
εµλε̃λν = δµν

We expand the gauge potential in powers of g0 in momentum space:

Bµ =
∑
k

gk
0 B

(k)
µ , B(k)

µ (x , t) = V−
1
2

′∑
q

B(k)
µ (q, t) e iqx Γ̂ (q)

We then plug this expansion into the flow equation, set ξ = 1, and
solve them order by order to get results of the form:

B(1)
µ (p, t) = e−p

2tAµ (p) , B(i)
µ (p, t) =

∫ t

0
dse−(t−s)p

2
R(i)
µ (p, s)
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Starting point

We wished to compute the observable up to order O(λ40):

E ≡ N−1 < E (t) >=
1

2N
< Tr(G 2

µν(x , t)) >

We expressed Gµν in terms of the Bµ fields, expanded the fields in
perturbation theory, plugged in the solutions to the flow equations to
relate them to the Aµ fields, and used the standard Feynman rules to
obtain the corresponding expectation values.

We obtained seven different terms contributing to E =
∑6

i=0 Ei .
One of terms is of order O(λ0), and the rest are of order O(λ20). For
instance, the term E5 is:

λ20 l̃
−2d(1− d)

∫ t

0
ds
∑
q,r

NF 2(q, r)e−(t+s)(q2+r2)−(t−s)p2 5r2 + qr

p2q2
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Integral form of the observable

The perturbative expansion of E at O(λ20) can be written as:

E ≡ λ0E(0)(t) + λ20E(1)(t) +O(λ30)

E(0) =
1

2
λ0 l̃
−d(d − 1)

′∑
q

e−2tq
2

For the subleading term, we rewrote the denominators using
Schwinger’s parametrisation, and the numerators as flow time
derivatives, and were able to rewrite it after a bit of algebra as the
sum of twelve basic integrals:

E(1)(t) = 2(d − 2)(I1 + I2)− 4(d − 1)I3 + 4(3d − 5)I4

+ 6(d − 1)(I5 − I6)− 2(d − 2)(d − 1)I7 +
1

2
(d − 2)2I8+

(d − 2)2I9 − 2(d − 1)(I10 + I11)− 4(d − 1)I12
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Example

As an example, one of the simplest integrals is, introducing three
auxiliary variables t ′ = 8t/(cl̃)2, ĉ = πc2/2, θ̂ = k̄/lg , and a
prefactor N = ĉ2/32π2 l̃ (2d−4):

I10(t ′) =

∫ ∞
0

dz

∫ t′

0
dxx ∂t′Φ

(
2t ′ + z , 2t ′, x

)
Φ(s, u, v) = N

∑
m,n∈Zd

e−πĉ(sm
2+un2+2vmn)(1− Re e−2πi θ̂nε̃m)

These Φ functions can be written in terms of Siegel Theta functions,
often implemented in computational software such as Mathematica:

Φ(s, u, v) = NRe(Θ(ĉs, ĉu, ĉv , 0)−Θ(ĉs, ĉu, ĉv , θ̂))
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Structure of the divergences

Some of the integrals in E(1) are UV divergent. After a bit of algebra,
all integrals can be made such that all divergences occur for u = 0,
with v ∝ u and with α ≡ s − v2/u > 0

Using Poisson resummation and defining n′ ≡ nµ − θ̂ε̃µνmν we have:

Θ(s, u, v , θ̂) = (ĉu)−
d
2

∑
m,n

e−πĉ(s−
v2

u
)m2− π

ĉu
n′2−i 2πv

u
mn

Singularities arise when θ̂ε̃µνmν ∈ Z in all directions. In our integrals,
this happens in two situations, leading to singularities of the form:

Θ ∼ (ĉu)−
d
2

∑
m

exp(−πĉαm2)

For θ̂ = 0, there are divergences for n′µ = nµ = 0 in all directions.

For θ̂ 6= 0, there are divergences for nµ = 0 and mν = 0 mod lg in all
twisted directions.
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Dealing with the divergences I

To deal with the divergences, we isolated the terms containing them,
subtracted them from the quantity to compute numerically, and then
obtained them analitically in dimensional regularisation.

For the θ̂ 6= 0 divergences, we defined an auxiliary H function so that
the divergences are reabsorbed into a θ̂ = 0 term:

Φ(s, u, v , θ̂) = H(s, u, v , 0)− H(s, u, v , θ̂)

H(s, u, v , θ̂) = N
∑
n

∑
m

′
Re e−πĉ(sm

2+un2+2vmn)−2πi θ̂mε̃n

For θ̂ = 0, recalling that α = s − v2

u , we define two functions:

A(ĉα) ≡ αd/2
∑
m∈Zd

′
e−παm

2
, φ∞(s, u, v) ≡ N ĉ−d(uα)−d/2
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Dealing with the divergences II

Taking θ̂ = 0 and n = 0 in H and integrating the result leads to an
integral I (0) containing the UV divergences plus a finite part:

φ(0)(s, u, v) = A(ĉα)φ∞(s, u, v), I
(0)
i =

∫
φ(0)(s, u, v)

We construct a finite quantity subtracting I
(0)
i from Ii , and all that is

left is to split and compute the finite and divergent parts of I
(0)
i .

Expanding A(ĉα) around u = 0, asymptotically we have:

I divi = A(2ĉt ′)I∞i , I∞i =

∫
φ∞(s, u, v)

The divergence is contained in I∞i , which is proportional to the infinite
volume integral, and can be computed in dimensional regularisation.

To deal with this divergence, we simply computed the finite quantities

I
(0)
i − I divi and A(2ĉt ′) numerically, and obtained I divi analytically.
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Dealing with the divergences - Summary

To summarise the previous two slides, we simply separated the
integrals into three parts:

Ii = (Ii − I
(0)
i ) + (I

(0)
i − I divi ) + I divi

The first two terms, Ii − I
(0)
i and I

(0)
i − I divi , were computed

numerically, preparing a C++ integration program expressly for the
former, and using Mathematica to compute the latter.

The last term, I divi , was obtained through a combination of numerical
and analytical approaches: the momentum part, contained in
A(2ĉt ′), was obtained numerically using Mathematica, while the I∞i
terms were obtained analitically using dimensional regularisation.
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Running coupling and lambda parameter

Combining everything that has been mentioned, we end up with:

E =
λ0(d − 1)A(2ĉt ′)

2(8πt)d/2

{
1 + λ0

(32πt)ε

16π2

(
11

3ε
+

52

9
− 3 log 3 + C1(t ′)

)}
Inserting the the bare coupling in terms of the MS one at a scale
µ = 1/cl̃ , this yields the following coupling and Λ parameter:

λTGF (l̃) = λMS

(
1 +

λMS

16π2

(
11

3
γE +

52

9
− 3 log 3 + C1(t ′ = 1)

))
log

(
ΛTGF

ΛMS

)
=

1

32π2b0

(
11

3
γE +

52

9
− 3 log 3 + C1

(
t ′ = 1

))
The large volume limit is obtained taking c → 0, for which C1 = 0
and we recover Lüscher’s infinite volume results. Lüscher ’10
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Implementation

Our goal was to obtain the finite constant C1(t ′ = 1), in order to
obtain the running coupling and lambda parameter.

We ran the computations for the case dt = 2, for a series of values of
c ranging from 0.4 to 0.8, and for eleven different combinations of k̄
and N, in order to study its dependence on both c and θ̂ = k̄/N.

For the first finite term Ii − I
(0)
i , we prepared a numerical C++ code

to compute the sums over momenta and integrate over them using a
trapezoidal rule integration algorithm for all twelve basic integrals.

A large part of the results of the C++ code were cross-checked using
an independent Mathematica code whenever possible.

The second finite term, I
(0)
i − I divi , was computed using Mathematica.

The momentum part A(2ĉt ′) was obtained using Mathematica as
well, whereas I∞i was determined analitically.
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SU(3) results
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General results
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Summary and conclusions

We considered a SU(N) pure gauge theory in the continuum, defined
in an asymmetrical four-dimensional finite torus with twisted
boundary conditions in one plane and periodical ones in the rest.

We expanded the gauge fields in perturbation theory, using the
gradient flow to define a renormalised ’t Hooft coupling with effective
length l̃ = Nl as the energy scale for the running, l being the physical
size of the smaller, twisted sides of the torus.

We rewrote the observable used to define the coupling in terms of
twelve integrals. We devised a way to regularise these integrals and
computed them for a range of values of θ̂ and c .

We obtained the running coupling and Λ parameter as a function of θ̂
and c , and recovered the correct limits in large volume.

In the future, we would like to repeat this computation on the lattice,
defining and computing the running coupling in terms of l̃ , as well as
estimate the extent of finite volume corrections in relation to the
matter of volume independence conjectures.
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Thank you.
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