Multilevel integration for meson propagators

Leonardo Giusti¹, Tim Harris¹, <u>Alessandro Nada</u>², Stefan Schaefer²

¹ Università di Milano-Bicocca & INFN, Milano-Bicocca ² NIC, DESY Zeuthen

23rd July 2018

"36th Annual Symposium in Lattice Field Theory" - Lattice 2018

East Lansing, Michigan, U.S.A., 22-28 July 2018

Signal-to-noise ratio problem

Signal of a two-point function (e.g. for the *rho* meson)

[Parisi; 1983],[Lepage; 1989]

$$C_{\rho}(y_0 - x_0) \propto e^{-m_{
ho}|y_0 - x_0|}$$

while its variance gets contribution from

$$\sigma_{
ho}^2(C_{
ho}(y_0-x_0))\propto e^{-2m_{\pi}|y_0-x_0|}$$

and so the ratio is exponentially suppressed at large source-sink distances

$$rac{{\mathcal C}_
ho(y_0-x_0)}{{\sigma_
ho}(y_0-x_0)/\sqrt{N}} \propto \sqrt{N} e^{-(m_
ho-m_\pi)|y_0-x_0|}$$

 \rightarrow particularly severe at small pion masses

Signal-to-noise ratio problem

Signal of a two-point function (e.g. for the *rho* meson)

[Parisi; 1983],[Lepage; 1989]

$$C_{\rho}(y_0 - x_0) \propto e^{-m_{\rho}|y_0 - x_0|}$$

while its variance gets contribution from

$$\sigma_{
ho}^2(C_{
ho}(y_0-x_0)) \propto e^{-2m_{\pi}|y_0-x_0|}$$

and so the ratio is exponentially suppressed at large source-sink distances

$$rac{{\mathcal C}_
ho(y_0-x_0)}{{\sigma_
ho}(y_0-x_0)/\sqrt{N}} \propto \sqrt{N} e^{-(m_
ho-m_\pi)|y_0-x_0|}$$

 \rightarrow particularly severe at small pion masses

Same problem for

nucleon correlators

$$\frac{C_N(y_0 - x_0)}{\sigma_N(y_0 - x_0)/\sqrt{N}} \propto \sqrt{N} e^{-(m_N - \frac{3}{2}m_\pi)|y_0 - x_0|}$$

Signal-to-noise ratio problem

Signal of a two-point function (e.g. for the *rho* meson)

[Parisi; 1983], [Lepage; 1989]

$$C_{\rho}(y_0 - x_0) \propto e^{-m_{\rho}|y_0 - x_0|}$$

while its variance gets contribution from

$$\sigma_{
ho}^2(C_{
ho}(y_0-x_0)) \propto e^{-2m_{\pi}|y_0-x_0|}$$

and so the ratio is exponentially suppressed at large source-sink distances

$$rac{C_{
ho}(y_0-x_0)}{\sigma_{
ho}(y_0-x_0)/\sqrt{N}} \propto \sqrt{N} e^{-(m_{
ho}-m_{\pi})|y_0-x_0|}$$

 \rightarrow particularly severe at small pion masses

Same problem for

nonzero momentum correlators

$$\frac{C_{\pi,\mathbf{p}}(y_0-x_0)}{\sigma_{\pi,\mathbf{p}}(y_0-x_0)/\sqrt{N}} \propto \sqrt{N}e^{-(E_{\pi}(\mathbf{p})-m_{\pi})|y_0-x_0|}$$

- A way of dealing with an exponentially vanishing signal-to-noise ratio is through a multilevel integration scheme
- ▶ Exploiting the locality of the theory, regions that are far away can be updated independently

Simplest case: two-level algorithm with two regions

- ▶ Level-0: *n*⁰ realizations of boundary between two regions (later: "frozen region")
- Level-1: the two regions are independently updated n_1 for each of the n_0 boundaries
- $n_0 \times n_1^2$ configurations for the cost of $n_0 \times n_1$
- $n_{reg} > 2 \rightarrow n_1^{n_{reg}}$ samples the error goes like

$$\delta(C) \sim n_1^{-rac{n_{reg}}{2}} e^{-m_{\pi}|y_0-x_0|}$$



- A way of dealing with an exponentially vanishing signal-to-noise ratio is through a multilevel integration scheme
- ▶ Exploiting the locality of the theory, regions that are far away can be updated independently

Simplest case: two-level algorithm with two regions

- ▶ Level-0: *n*⁰ realizations of boundary between two regions (later: "frozen region")
- Level-1: the two regions are independently updated n_1 for each of the n_0 boundaries
- $n_0 \times n_1^2$ configurations for the cost of $n_0 \times n_1$
- $n_{reg} > 2 \rightarrow n_1^{n_{reg}}$ samples the error goes like

$$\delta(C) \sim n_1^{-\frac{n_{reg}}{2}} e^{-m_{\pi}|y_0-x_0|}$$

This is feasible if both the action and the observable can be factorized.

Solutions in pure-gauge theory:

- multihit [Parisi, Petronzio & Rapuano; 1983]
- ▶ multilevel for Wilson loops and Polyakov loop correlators [Lüscher & Weisz; 2001]
- also [Meyer; 2002] and [Giusti & Della Morte; 2008, 2010]

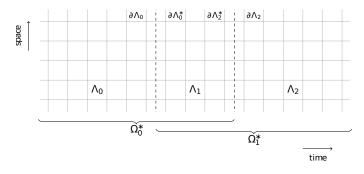
Multilevel integration - for fermions

After Wick's theorem it's not obvious how the QCD action and the observable (propagator) can be factorized.

 \rightarrow breakthrough in the development of a multilevel integration scheme for fermions [Cè,Giusti & Schaefer; 2016,2017].

ightarrow both the determinant and the propagator can be completely factorized

Setup: overlapping domains Ω_0^* and Ω_1^*



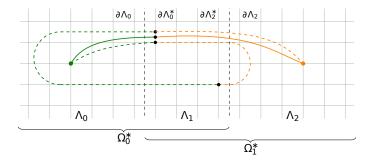
Factorization of the connected propagator

The exact propagator can be written as

$$Q^{-1} = - Q_{\Omega_1^*}^{-1} Q_{ \Lambda_{1,0}} rac{1}{1-\omega} Q_{\Omega_0^*}^{-1}$$

with $Q = \gamma_5 D$ and where

$$\omega = Q_{\Omega_0^*}^{-1} Q_{\Lambda_{1,2}} Q_{\Omega_1^*}^{-1} Q_{\Lambda_{1,0}}$$



Fully factorized approximation:

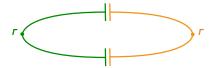
$$Q^{-1}\simeq - Q^{-1}_{\Omega_1^*} Q_{\Lambda_{1,0}} Q^{-1}_{\Omega_0^*}$$

A new method with noise sources

A viable method is needed to compute C^{fact} efficiently in a multilevel integration scheme

$$C_{\Gamma}^{fact}(y_{0}, x_{0}) = \mathsf{Tr} \left\{ Q_{\Omega_{0}^{+}}^{-1}(\cdot, x_{0}) \Gamma Q_{\Omega_{0}^{+}}^{-1}(x_{0}, \cdot) Q_{\Lambda_{1,0}} Q_{\Omega_{1}^{+}}^{-1}(\cdot, y_{0}) \Gamma Q_{\Omega_{1}^{+}}^{-1}(y_{0}, \cdot) Q_{\Lambda_{1,0}} \right\}$$

Naively one would store $\sim (V_3)^2$ (or $(V_3)^3$ for baryons) complex numbers... \rightarrow not feasible

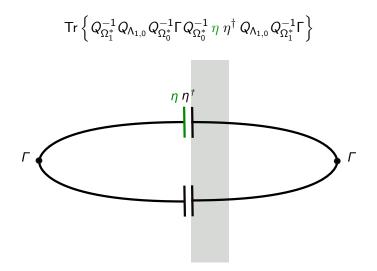


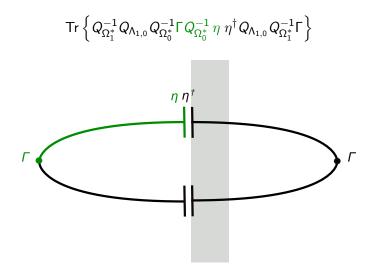
Our new proposal exploits the newly factorized observable by putting noise sources in the middle of the lattice

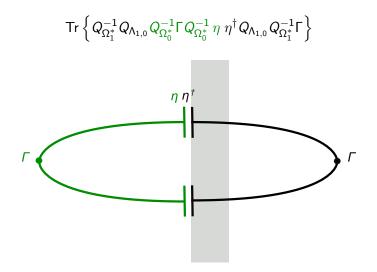
 \rightarrow right next to the boundary of the frozen region, i.e.

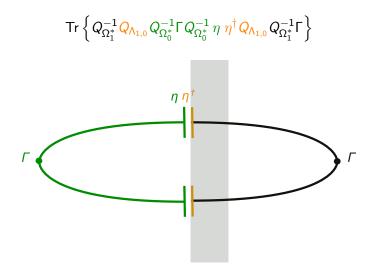
$$C_{\Gamma}^{fact}(y_{0}, x_{0}) = \frac{1}{N_{\eta}} \sum_{i}^{N_{s}} \mathsf{Tr} \left\{ Q_{\Omega_{0}^{*}}^{-1}(\cdot, x_{0}) \Gamma Q_{\Omega_{0}^{*}}^{-1}(x_{0}, \cdot) \eta_{i} \eta_{i}^{\dagger} Q_{\Lambda_{1,0}} Q_{\Omega_{1}^{*}}^{-1}(\cdot, y_{0}) \Gamma Q_{\Omega_{1}^{*}}^{-1}(y_{0}, \cdot) Q_{\Lambda_{1,0}} \right\}$$

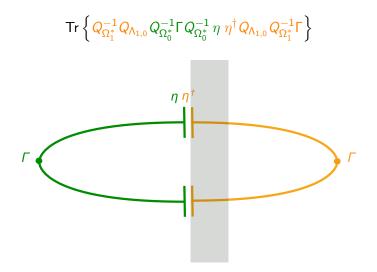
 \rightarrow the meson propagator can be computed sequentially \rightarrow only \sim V_3 complex numbers to be saved











A test in quenched QCD

The quenched theory suffers from the S-N ratio problem as well \rightarrow perfect playground for a multilevel test

β	L/a	T/a	κ	c _{SW}	m_{PS} (MeV)	<i>a</i> (fm)
6.2	32	96	0.1352	1.61375	580	0.068

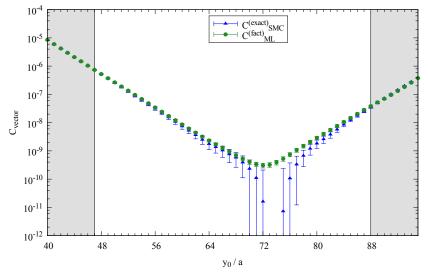
 \rightarrow periodic boundary conditions

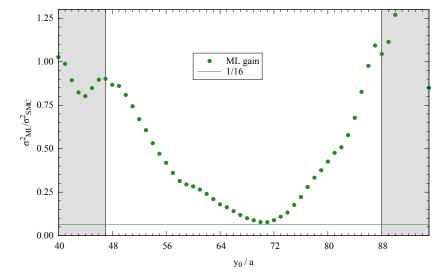
Multilevel simulation with

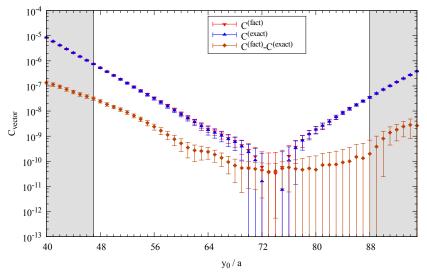
- two active regions connected by two frozen regions of width $\Delta = 8a$
- $n_0 = 50$ level-0 updates $\times n_1 = 16$ level-1 updates
- $N_{\eta} = 40$ noise sources
- $\Gamma = \gamma_i$ with i = 1, 2, 3

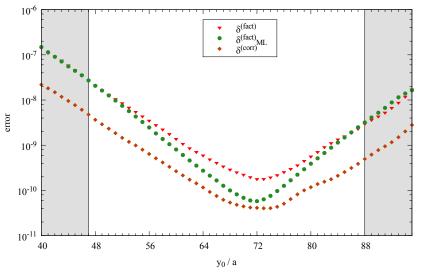
The factorized meson propagator is an approximation: also the rest (whose size depends on Δ) has to be computed. Strategy of the calculation:

$$\langle C_{
ho}
angle = \langle C_{
ho}^{\mathsf{fact}}
angle_{\mathsf{ML}} + \langle C_{
ho}^{\mathsf{ex}} - C_{
ho}^{\mathsf{fact}}
angle_{\mathsf{SMC}}$$









- new method to directly compute the factorized form of the connected propagator sequentially (with 2 active regions)
- clear improvement with respect to previous method (projection to deflated modes)
- \blacktriangleright theoretical gain of multilevel (\sim 16 in the cost) reached far away enough from the frozen region
- \blacktriangleright the rest of the propagator is computed with standard MC \rightarrow in this case it is quite small $\sim 3-5\%$ for $\Delta=8$
- \blacktriangleright if it is large and/or with large error \rightarrow multilevel also on the rest
- next: advancements for disconnected propagator by Tim

Thanks for your attention!

• Decomposition of Hermitian Wilson-Dirac operator $Q = \gamma_5 D$ [Lüscher; 2003]

$$Q = egin{pmatrix} Q_{\Gamma} & Q_{\partial\Gamma} \ Q_{\partial\Gamma^*} & Q_{\Gamma^*} \end{pmatrix}$$

Schur complement

$$S_{\Gamma} = Q_{\Gamma} - Q_{\partial \Gamma} Q_{\Gamma^*}^{-1} Q_{\partial \Gamma^*}$$

If $\Gamma=\Lambda_0$ and $\Gamma^*=\Omega_1^*$ we can write

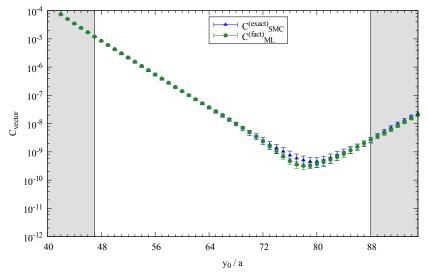
$$Q^{-1} = \begin{pmatrix} S_{\Lambda_0}^{-1} & -S_{\Lambda_0}^{-1}Q_{\Lambda_{1,0}}Q_{\Omega_1}^{-1} \\ -Q_{\Omega_1}^{-1}Q_{\Lambda_{1,0}}S_{\Lambda_0}^{-1} & Q_{\Omega_1}^{-1} + Q_{\Omega_1}^{-1}Q_{\Lambda_{1,0}}S_{\Lambda_0}^{-1}Q_{\Lambda_{1,0}}Q_{\Omega_1}^{-1} \end{pmatrix}$$

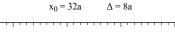
and noting that

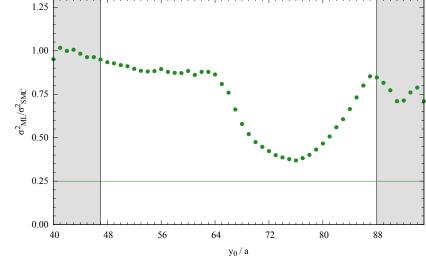
$$S_{\Lambda_0}^{-1} = P_{\Lambda_0} Q^{-1} P_{\Lambda_0} = P_{\Lambda_0} Q_{\Omega_0^*}^{-1} P_{\Lambda_0} + \dots$$

we get (bottom left element)

$$Q^{-1} \simeq - Q_{\Omega_1^*}^{-1} Q_{\Lambda_{1,0}} Q_{\Omega_0^*}^{-1}$$







Factorization of the two-point function was previously attempted in different ways:

- ▶ placing two different noise sources to cut the two quark lines → in practice the variance is extremely large, due to the presence of disconnected diagrams which do not benefit from volume averaging
- ▶ cut the two lines with N orthonormal vectors which can be used to project the propagator → memory problem under control $(V_3)^2 \rightarrow N^2$
- ▶ it is a viable (but expensive) possibility. successfully implemented using
 - Iocal deflation subspace
 - generating eigenvectors of the Dirac operator restricted to a block of width 2Δ