Pion distribution amplitude from Euclidean correlation functions: Exploring universality and higher-twist effects

Philipp Wein,

Gunnar S. Bali, Vladimir M. Braun, Benjamin Gläßle, Meinulf Göckeler, Michael Gruber, Fabian Hutzler, Piotr Korcyl, Andreas Schäfer and Jian-Hui Zhang

Institut für Theoretische Physik Universität Regensburg

July 25, 2018, East Lansing

arXiv: 1807.06671

Definition of distribution amplitudes

$$|\pi\rangle = |\bar{q}q\rangle + |\bar{q}gq\rangle + \dots$$

- hard exclusive processes are sensitive to
 - ► Fock states with smallest number of partons
 - the distribution of the momentum within a Fock state at small transverse distances
- this information is contained in light-cone DAs; leading twist DA ϕ_π

$$\langle 0|\bar{u}(z)[z,-z] \not = \gamma_5 u(-z)|\pi(p)\rangle = iF_\pi \, p \cdot z \int_0^1 du \, e^{i(2u-1)p \cdot z} \phi_\pi(u,\mu) \qquad \underline{z^2 = 0}$$

- quark and antiquark carry the momentum fraction u and $\bar{u}=1-u$, respectively
- physical information: complementary to PDFs
- lattice technique: very similar to PDFs

Lattice methods

Problem: on a Euclidean space-time one cannot realize nontrivial lightlike distances

- $\underline{\text{traditional solution:}}$ calculate Mellin moments of the DAs ($\hat{=}$ local derivative ops.)
 - ▶ higher moments → problems with renormalization (operator mixing)
- new approach: relate DAs to correlation functions at spacelike distance
 - → requires large hadron momenta
 - \rightarrow relies heavily on pQCD
 - ▶ Option 1: use a nonlocal operator $\langle 0|\bar{q}(z)\Gamma[z,0]q(0)|\pi\rangle$ $\underline{z^2<0}$

Option 2: use two local operators $\langle 0|\bar{q}(z)\Gamma_1q(z)\bar{q}(0)\Gamma_2q(0)|\pi\rangle$ $z^2<0$

Option 2: use two local operators $(0|q(z)|_1q(z)q(0)|_2q(0)|\pi)$ z = 0Braun, Müller arXiv:0709.1348

Ma. Qiu arXiv:1709.03018

•

Philipp Wein

Hadron structure, Tue 15:20 (P. Korcyl)

LaMET

DA \(\ldots\) correlation function (schematically & oversimplified)

our ansatz: (also works when using the Wilson-line operator)

- parametrize DA (& higher twist effects) and fit directly to the lattice data
- basic idea very similar to "lattice cross section" talks on PDFs

Hadron structure, Tue 14:00 (R. Sufian), 14:20 (B. Chakraborty)

(feel free to replace DA by PDF on this slide)

Philipp Wein 4/

$$\mathbb{T}_{XY}(p \cdot z, z^2) = \langle 0 | J_X^{\dagger}(\frac{z}{2}) J_Y(-\frac{z}{2}) | \pi^0(p) \rangle$$

$$J_S = \bar{q} u \,, \quad J_P = \bar{q} \gamma_5 u \,, \quad J_V^{\mu} = \bar{q} \gamma^{\mu} u \equiv J_{V^{\mu}} \,, \quad J_A^{\mu} = \bar{q} \gamma^{\mu} \gamma_5 u \equiv J_{A^{\mu}}$$

$$\begin{split} \mathbb{T}_{\text{SP}} &= \frac{T_{\text{SP}}}{T_{\text{VV}}} \\ \mathbb{T}_{\text{VV}}^{\mu\nu} &= \frac{i\varepsilon^{\mu\nu\rho\sigma}p_{\rho}z_{\sigma}}{p\cdot z} \frac{T_{\text{VV}}}{T_{\text{VA}}} \\ \mathbb{T}_{\text{VA}}^{\mu\nu} &= \frac{p^{\mu}z^{\nu} + z^{\mu}p^{\nu} - g^{\mu\nu}p\cdot z}{p\cdot z} \frac{T_{\text{VA}}}{T_{\text{VA}}} + \frac{p^{\mu}z^{\nu} - z^{\mu}p^{\nu}}{p\cdot z} T_{\text{VA}}^{(2)} + \frac{2z^{\mu}z^{\nu} - g^{\mu\nu}z^{2}}{z^{2}} T_{\text{VA}}^{(3)} \\ &+ \frac{2p^{\mu}p^{\nu} - g^{\mu\nu}p^{2}}{n^{2}} T_{\text{VA}}^{(4)} + g^{\mu\nu}T_{\text{VA}}^{(5)} \end{split}$$

- similar for PS, AA, AV
- q is an auxiliary quark $q \neq u, d$, but $m_q = m_u = m_d$

$$T_{\mathrm{XY}}(p \cdot z, z^2) = F_\pi \frac{p \cdot z}{2\pi^2 z^4} \underbrace{\int_0^1 \!\! du \, e^{i(u-1/2)p \cdot z} \!\! \phi_\pi(u) + \!\! \mathcal{O}(\alpha_s) + \!\! \mathrm{higher \ twist}}_{\equiv \Phi^{\mathrm{XY}}(p \cdot z, z^2)}$$

• twist 4 effects estimated using asymptotic shape for chiral-odd twist three DAs \rightarrow one parameter $\delta_2^\pi=0.17~\text{GeV}^2$ (at $\mu=2~\text{GeV}$, QCD sum rule estimate)

$$T_{\mathrm{XY}}(p \cdot z, z^2) = F_\pi \frac{p \cdot z}{2\pi^2 z^4} \underbrace{\int_0^1 \!\! du \, e^{i(u-1/2)p \cdot z} \!\! \phi_\pi(u) + \!\! \mathcal{O}(\alpha_s) + \!\! \mathrm{higher \ twist}}_{\equiv \Phi^{\mathrm{XY}}(p \cdot z, z^2)}$$

• twist 4 effects estimated using asymptotic shape for chiral-odd twist three DAs \rightarrow one parameter $\delta_2^\pi=0.17~{\rm GeV}^2$ (at $\mu=2~{\rm GeV}$, QCD sum rule estimate)

$$T_{\mathrm{XY}}(p \cdot z, z^2) = F_\pi \frac{p \cdot z}{2\pi^2 z^4} \underbrace{\int_0^1 \!\! du \, e^{i(u-1/2)p \cdot z} \!\! \phi_\pi(u) + \mathcal{O}(\alpha_s) + \text{higher twist}}_{\equiv \Phi^{\mathrm{XY}}(p \cdot z, z^2)}$$

• twist 4 effects estimated using asymptotic shape for chiral-odd twist three DAs \rightarrow one parameter $\delta_2^\pi=0.17~{\rm GeV}^2$ (at $\mu=2~{\rm GeV}$, QCD sum rule estimate)

$$T_{\mathrm{XY}}(p \cdot z, z^2) = F_\pi \frac{p \cdot z}{2\pi^2 z^4} \underbrace{\int_0^1 \!\! du \, e^{i(u-1/2)p \cdot z} \!\! \phi_\pi(u) + \mathcal{O}(\alpha_s) + \text{higher twist}}_{\equiv \Phi^{\mathrm{XY}}(p \cdot z, z^2)}$$

• twist 4 effects estimated using asymptotic shape for chiral-odd twist three DAs \rightarrow one parameter $\delta_2^\pi=0.17~{\rm GeV}^2$ (at $\mu=2~{\rm GeV}$, QCD sum rule estimate)

$$T_{\mathrm{XY}}(p \cdot z, z^2) = F_\pi \frac{p \cdot z}{2\pi^2 z^4} \underbrace{\int_0^1 \!\! du \, e^{i(u-1/2)p \cdot z} \!\! \phi_\pi(u) + \! \mathcal{O}(\alpha_s) + \! \mathrm{higher \ twist}}_{\equiv \Phi^{\mathrm{XY}}(p \cdot z, z^2)}$$

• twist 4 effects estimated using asymptotic shape for chiral-odd twist three DAs \rightarrow one parameter $\delta_2^\pi=0.17~\text{GeV}^2$ (at $\mu=2~\text{GeV}$, QCD sum rule estimate)

$$T_{\mathrm{XY}}(p \cdot z, z^2) = F_\pi \frac{p \cdot z}{2\pi^2 z^4} \underbrace{\int_0^1 \!\! du \, e^{i(u-1/2)p \cdot z} \!\! \phi_\pi(u) + \! \mathcal{O}(\alpha_s) + \! \mathrm{higher \ twist}}_{\equiv \Phi^{\mathrm{XY}}(p \cdot z, z^2)}$$

• twist 4 effects estimated using asymptotic shape for chiral-odd twist three DAs \rightarrow one parameter $\delta_2^\pi=0.17~{\rm GeV}^2$ (at $\mu=2~{\rm GeV}$, QCD sum rule estimate)

Obtaining the matrix elements from Lattice

- the Z_X is the renormalization factor for the respective current (nonperturbatively calculated in RI'-MOM \rightarrow conversion to $\overline{\text{MS}}$ in 3-loop PT)
- ullet we set both, the renormalization and the factorization scale to $\mu=2/|\mathbf{z}|$
- phase factor shifts the currents to the symmetric position

Obtaining the matrix elements from Lattice

- smearing: momentum smearing
 - → improved overlap with hadrons at large momentum
- new: we use stochastic estimation
 - \rightarrow get a volume average at the cost of some stochastic noise
 - → much smaller statistical error

Discretization effects of the free Wilson propagator

propagator comparison:

free Wilson vs. free continuum

- large effects in chiral even (blue, $\propto \not z$) and chiral odd (red, $\propto 1$) part
- in continuum: chiral odd part strongly suppressed
- problem on lattice: large artefacts from terms removing the doublers

solution:

1 use observables, where the chiral odd part does not contribute at tree-level

$$\frac{1}{2}(T_{\rm SP} + T_{\rm PS}), \qquad \frac{1}{2}(T_{\rm VA} + T_{\rm AV}), \qquad \frac{1}{2}(T_{\rm VV} + T_{\rm AA})$$

- introduce correction factor for chiral even part
- **3** most important: ignore distances where the correction > 10% or $|\mathbf{z}| < 3a$

Discretization effects of the free Wilson propagator

propagator comparison:

free Wilson vs. free continuum

- large effects in chiral even (blue, $\propto \not z$) and chiral odd (red, $\propto 1$) part
- in continuum: chiral odd part strongly suppressed
- problem on lattice: large artefacts from terms removing the doublers

note:

- II upper limit of range determined by $\mu=2/|\mathbf{z}|\geq 1\,\mathrm{GeV}$ $\Rightarrow a \to a/2$ shifts the upper limit by a factor 4 to the right
- discretization effects are strongest along the axes (crosses)
 → similar for Wilson-line operators?

Numerical study

Simulation details:

- ullet mass-degenerate $N_f=2$ nonperturbatively improved Wilson (clover) fermions and Wilson gluon action
- $L^3 \times T = 32^3 \times 64$
- coupling parameter $\beta = 5.29 \stackrel{.}{=}$ lattice spacing $a \approx 0.071 \, \text{fm} = (2.76 \, \text{GeV})^{-1}$
- mass parameter $\kappa = 0.13632~\hat{=}$ pion mass $m_\pi = 0.10675(59)/a \approx 295\,\mathrm{MeV}$
- 12 momenta in different directions with 0.54 GeV $\leq |\mathbf{p}| \leq$ 2.03 GeV

DA parametrizations: at the scale $\mu = 2 \, \text{GeV}$

• Expansion in orthogonal (Gegenbauer) polynomials (truncated at n=2 or n=4)

$$\phi_{\pi}(u,\mu) = 6u(1-u)\sum_{n=0,2,...}^{\infty} a_n^{\pi}(\mu)C_n^{3/2}(2u-1), \qquad a_0^{\pi} = 1 \text{ (normalization)}$$

alternatively we try

$$\phi_\pi(u,\mu) \propto \left[u(1-u)\right]^{lpha}, \qquad \text{normalized to one}$$

Combined fit to all channels (Legacy Plot)

- two parameters: α , δ_2^{π}
- two parameters: a_2^{π} , δ_2^{π}
- three parameters: a_2^π , a_4^π , δ_2^π \leftarrow yields unreasonable values for a_4^π

- splitting between SP+PS and VV+AA data is consistent with the pQCD expectation
- "jumping" of the points shows large discretization effects
- probably 2 loop perturbative effects are crucial

- splitting between SP+PS and VV+AA data is consistent with the pQCD expectation
- "jumping" of the points shows large discretization effects
- probably 2 loop perturbative effects are crucial

- splitting between SP+PS and VV+AA data is consistent with the pQCD expectation
- "jumping" of the points shows large discretization effects
- probably 2 loop perturbative effects are crucial

- splitting between SP+PS and VV+AA data is consistent with the pQCD expectation
- "jumping" of the points shows large discretization effects
- probably 2 loop perturbative effects are crucial

- splitting between SP+PS and VV+AA data is consistent with the pQCD expectation
- "jumping" of the points shows large discretization effects
- probably 2 loop perturbative effects are crucial

- splitting between SP+PS and VV+AA data is consistent with the pQCD expectation
- "jumping" of the points shows large discretization effects
- probably 2 loop perturbative effects are crucial

- splitting between SP+PS and VV+AA data is consistent with the pQCD expectation
- "jumping" of the points shows large discretization effects
- probably 2 loop perturbative effects are crucial

- splitting between SP+PS and VV+AA data is consistent with the pQCD expectation
- "jumping" of the points shows large discretization effects
- probably 2 loop perturbative effects are crucial

- splitting between SP+PS and VV+AA data is consistent with the pQCD expectation
- "jumping" of the points shows large discretization effects
- probably 2 loop perturbative effects are crucial

- splitting between SP+PS and VV+AA data is consistent with the pQCD expectation
- "jumping" of the points shows large discretization effects
- probably 2 loop perturbative effects are crucial

Result for DAs

- errorbands show only the statistical error
- parameters: $\alpha = 0.13(5)$, $\delta_2^{\pi} = 0.223(4) \, \text{GeV}^2$ $a_2^{\pi} = 0.30(3)$, $\delta_2^{\pi} = 0.223(4) \, \text{GeV}^2$
- both agree perfectly well with our data: Why?
- ullet only relevant information from DA for our data points is a_2^π and $a_2^\pi=0.31(3)$
- Disclaimer: current systematic uncertainty for a_2^{π} , δ_2^{π} is at least $\approx 50\%$ (fit range variation, estimate for two-loop correction)

Whats the problem with a_4^{π} ?

$$\phi_{\pi}(u,\mu) = 6u(1-u) \sum_{n=0,2,\dots}^{\infty} a_n^{\pi}(\mu) C_n^{3/2}(2u-1)$$

$$\Rightarrow \quad \Phi^{\rm XY} = \sum_{n=0,2,\ldots}^{\infty} a_n^\pi(\mu) \mathcal{F}_n(p \cdot z/2) + \frac{\mathcal{O}(\alpha_s)}{(\alpha_s)} + \text{higher twist}$$

Expansion in conformal partial waves \mathcal{F}_n

- one needs $|p \cdot z| \gtrsim 5$ to constrain a_4^{π} to reasonable values
- to discriminate between DAs on last slide: $|p \cdot z| \gtrsim 8$?

Summary

- we have analysed Euclidean correlation functions with two local currents
- global fit to multiple channels yields qualitatively reasonable results (universality)
- first determination of HT normalization δ_2^{π} from lattice QCD (in the ballpark of QCD sum rule estimates)
- statistical accuracy very good for a_2^{π} and δ_2^{π}

BUT:

- systematic uncertainty for a_2^{π} and δ_2^{π} is very large (discretization effects, two-loop perturbative correction not taken into account)
- with current data no determination of a_4^{π} possible

Next steps:

- goto smaller lattice spacings ($a \approx 0.04 \, \text{fm}$ would be nice)
- perturbative two-loop calculation for coefficient functions
- to be sensitive to a_4^{π} : goto larger momenta ($|\mathbf{p}| > 3 \,\text{GeV}$ would be nice)

Plateau Fits

- no sign of excited states (so far)
- for large momentum they might be hidden under bad statistics