Fernando Romero-López

In collaboration with: A. Donini, P. Hernández & C. Pena

arXiv:1711.10248, arXiv:1607.03262 and on-going work

University of Valencia, IFIC

fernando romero@uv es

Michigan State University, July 26, 2018

Motivation

Framework

Overview

- Motivation
- 2 Framework
- 3 Lattice Results in the Quenched Approximation
- 4 Dynamical Simulations $N_f = 4$ and $N_c \ge 3$
- **5** Results with $N_f = 4$ and $N_c = 3$
- 6 Mass Corrections in $N_f = 4$ ChPT
- Conclusion and Outlook

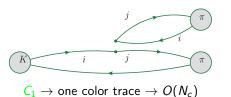
Motivation

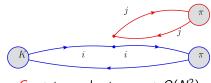
Motivation

Non-Leptonic Kaon Decays

• Experimental values for $K \to \pi\pi$ are very well measured in two isospin channels, I = 0, 2 and it differs strongly from the Large N_c prediction.

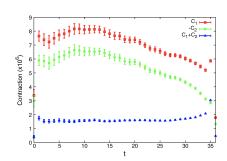
$$\frac{\text{Re } A_0}{\text{Re } A_2} = 22.35 \gg \sqrt{2} \Bigg|_{\text{Large } N_c},$$


• State of the art result by RBC-UKQCD, 2015:


$$\frac{\text{Re } A_0}{\text{Re } A_2} = 31(11),$$

• Our goal: combine knowledge from Large N_c , Chiral Perturbation Theory and Lattice QCD to understand the origin of the underlying dynamics.

Current Lattice results for $K \to \pi\pi$


RBC-UKQCD, PRD91 (2015) and PRL115 (2015)

 $C_1 \rightarrow \text{two color traces} \rightarrow O(N_c^2)$

- $\frac{\text{Re } A_0}{\text{Re } A_2} = 31(11)$
- It relies on a cancellation
- Large N_c predicts $|C_1| \sim \frac{|C_2|}{3}$
- However $C_1 \sim -0.7C_2$
- Very big $1/N_c$ corrections?

Open Points

A cancellation between two different diagrams seems to be the source of the enhancement. However, diagrams by themselves are not physical.

A more rigorous way to formulate it would be in terms of **big** Large N_c corrections, and this can be tested non perturbatively.

Even if the result would eventually agree with the experiment, the **origin** of the enhancement in the I=0 channel is **not clear**.

In addition, Large N_c inspired approaches are usual in **phenomenology** (*Pich, Buras...*) and understanding the dynamics can be useful.

otivation Framework Quenched Results Dynamical ensambles $N_f = 4$ Results Mass Corrections Conclusion 00 00 00 00 00

Framework

Effective $SU(4)_F$ Theory

Framework

Motivation

Relating $K \to \pi$ to A_2 and A_0

$$\mathcal{H}_W \propto g^+ \mathcal{O}^+ + g^- \mathcal{O}^-, \tag{1}$$

The tree level result in ChPT for the ratio is:

$$\frac{A_0}{A_2} = \frac{1}{2\sqrt{2}} \left(1 + 3 \frac{g^-}{g^+} \right) \tag{2}$$

Determine g^{\pm} from Lattice QCD:

$$\langle K|\mathcal{O}^{\pm}|\pi\rangle \propto g^{\pm}$$
 (3)

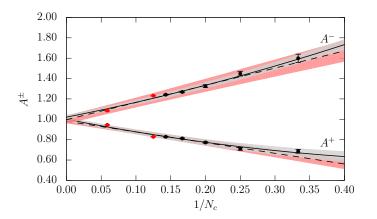
In particular, one can test the scaling with N_c and M_K , M_{π} .

$$g^{\pm} \propto \sum_{ ext{Color-connected } O(N_c)}^{ ext{Color-disconnected } O(N_c^2)}$$

Lattice Results in the Quenched Approximation

Technical details

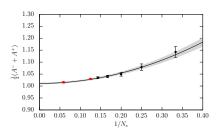
• Test the N_c scaling of:

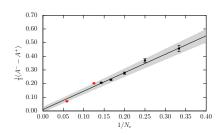

$$\langle K|\mathcal{O}^{\pm}|\pi\rangle \propto g^{\pm}$$
 (4)

Conclusion

- Quenched Lattice QCD with twisted mass fermions
- Mass around 570 MeV
- Lattice spacing $a \sim 0.093$ fm
- $N_c = 3 7, 8, 17$
- Perturbative one-loop renormalization of the correlation functions
- Running Wilson coefficients to one loop

Results for $K \to \pi$ at Large N_c


A. Donini, P. Hernández, F. Romero-López, C. Pena, PRD94 (2016)


Large N_c corrections for $K \to \pi$ are fully anticorrelated and point towards an enhancement of the ratio!

Results for $K \to \pi$ at Large N_c

A. Donini, P. Hernández, F. Romero-López, C. Pena, PRD94 (2016)

Leading part of the Amplitude, $1 + O(1/N_c^2)$

Subleading part of the Amplitude, $O(1/N_c)$

Large N_c corrections for $K \to \pi$ are 30-40%

However, RBC-UKQCD (2015) obtained ∼ 70%

Dynamical Simulations $N_f = 4$ and $N_c \ge 3$

Motivation

Details of the simulation

Quenching gives the exact Large N_c limit but it can alter subleading $1/N_c$ corrections.

- \Rightarrow repeat our study with dynamical fermions
 - $N_c = 3$ Parameters inspired from *ETMC*, $N_f = 2 + 1 + 1$: **Iwasaki gauge action**.
 - c_{sw} is taken from $N_c=3$ perturbative result boosted with the plaquette. For $N_c>3$ is taken as constant. (Aoki and Kuramashi, 2008)
 - Use mixed action setup: Wilson in the sea + TM in valence sector, as in CLS, arXiv:1711.06017.
 - Lattice spacing $a \simeq 0.075$ fm and lattices with $L \times T = 20 \times 32$, 24×48 and 32×60

Scale Setting

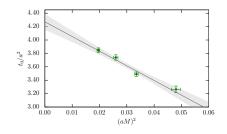
A light charm has a big impact in fermionic observables \Rightarrow need an observable "independent" of N_f

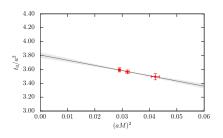
Scale setting through t_0 depends weakly on N_f at one loop and $N_f = 2,3$ are available.

$$\langle t^2 E(t) \rangle = \frac{3}{128\pi^2} \frac{N_c^2 - 1}{N_c} \lambda(q) \left(1 + \frac{c_1}{4\pi} \lambda(q) + O(\lambda^2) \right), \quad (5)$$

with $c_1 = 0.36593 + 0.0075 \frac{N_f}{N}$.

For every value of N_c , use for scale setting:


$$(M\sqrt{t_0})\Big|_{M=420 \text{ MeV}} = 0.3090(83).$$
 (6)

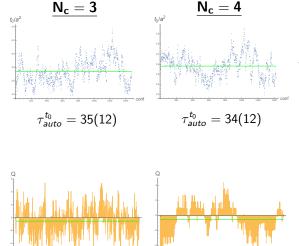

Scale Setting $N_c = 3, 4$

Chiral behaviour of t_0 is known (Bär and Goltermann, 2014):

$$t_0(M^2) = t_0^{ch} (1 + kM^2) + O(M^4)$$
 (7)

Large
$$N_c \Rightarrow t_0(M^2) = t_0^{ch}$$

Scale setting $N_c = 3 \ (\beta = 1.778)$


$$a = 0.0753(10)^{syst}(4)^{stat}$$
 fm

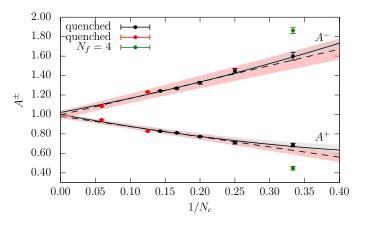
Scale Setting
$$N_c = 4 \ (\beta = 3.570)$$

 $a = 0.0763(10)^{syst}(2)^{stat}$ fm

 $\tau_{auto}^{Q} = 8(2)$

 $\tau_{auto}^{Q} = 73(28)$

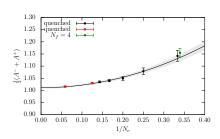
Additional Information to $N_c = 3,4$

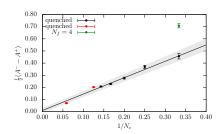

Some remarks:

- Top. Charge is suppressed with N_c .
- τ_{auto}^{Q} blows for the Top. Charge.
- $au_{auto}^{t_0}$ does not change.
- Mass dependence in t₀ is suppressed.

Results with $N_f = 4$ and $N_c = 3$

$K \rightarrow \pi$ in $N_f = 4$ dynamical fermions

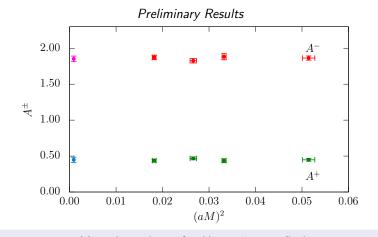

Preliminary Results


Large N_c corrections for $K \to \pi$ are larger in the unquenched case!

$K \rightarrow \pi$ in $N_f = 4$ dynamical fermions

Preliminary Results

Leading part of the Amplitude, $1 + O(1/N_c^2)$



Subleading part of the Amplitude, $O(1/N_c)$

Large N_c corrections for $K \to \pi$ are $\sim 70\%$

It seems to agree with RBC-UKQCD (2015).

Mass dependence in $K \to \pi$

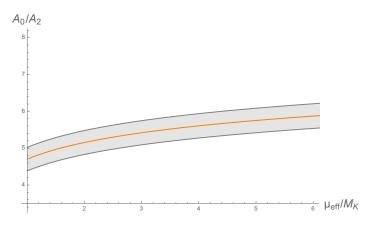
Mass dependence for
$$K \to \pi$$
 is very flat!
$$\frac{g^-}{g^+}\Big|_{N_f=4} = 4.1(3) \quad \text{vs} \quad \frac{g^-}{g^+}\Big|_{\text{quenched}} = 2.4(1)$$
 (8)

Mass Corrections in $N_f = 4$ ChPT

$SU(4)_F$ ChPT Predictions at NLO

 $SU(3)_F$ ChPT results are known, but we need an active charm.

With $\mathcal{H}_W \propto g^+ \mathcal{O}^+ + g^- \mathcal{O}^-$, we calculate at leading log:


• $M_{\pi}, M_D \rightarrow 0$ and M_K^{phys}

$$\begin{split} \frac{A_0}{A_2} \Big|_{M_\pi, M_D \to 0, M_K^{\text{phys}}} &= \frac{1}{2\sqrt{2}} \left(1 + 3 \frac{g^-}{g^+} \right) \\ &- \frac{17}{6\sqrt{2}} \left(1 + \frac{1}{17} \frac{g^-}{g^+} \right) \frac{M_K^2}{(4\sqrt{2}\pi F)^2} \log \frac{M_K^2}{\mu_{\text{eff}}^2} \\ &- i \frac{3}{4\sqrt{2}} \pi \left(1 + 5 \frac{g^-}{g^+} \right) \frac{M_K^2}{(4\sqrt{2}\pi F)^2}, \end{split}$$

Re (A_0/A_2) is enhanced at NLO!

$SU(4)_F$ ChPT Predictions at NLO

Preliminary Results

Enhancement is still far away from the experiment by a factor 2. NLO result is **up to 25%**.

Conclusion and Outlook

Summary

- Puzzle of the $\Delta I = 1/2$ still very challenging.
- Explanation for the hierarchy between A_0 and A_2 still unclear.
- Possible factors: $1/N_c$ corrections, breaking of $SU(3)_F$, contribution of the charm
- A dynamical charm quark enables the disentaglement of the effects.
- Lattice QCD can help not only to give the Standard Model prediction, but also to conceptually understand this enhancement.

Outlook

- More dynamical lattice simulations with $N_f=4$ and $N_c\geq 3$
- Explore the case $N_f = 3 + 1$
- $K o \pi\pi$ directly on Large N_c Lattice QCD
- Ab initio exploration of the N_c dependence of other quantities such as LECs or ϵ'/ϵ (\rightarrow Useful for phenomenology.)
- Explore the contribution of other operators BSM and obtain constraints

Motivation

Framework

Thanks for your attention!