Progress on relativistic threeparticle quantization condition

Steve Sharpe
University of Washington

In collaboration with Tyler Blanton (UW), Raul Briceño (ODU/Jlab), Max Hansen (CERN) and Fernando Romero-Lopez (Valencia)

> Based on arXiv: 1803.04I69 (published in PRD), arXiv:I808:XXXXX, and work in progress

Outline

- Motivation
- Status
- Completing the formalism: including resonant subchannels
- Numerical results from the isotropic approximation
- Numerical results including higher partial waves

Motivation

- Studying resonances with three particle decay channels
- $\omega\left(782, I^{G} J^{P C}=0^{-} 1^{--}\right) \rightarrow 3 \pi \quad$ (no resonant subchannels)
- $a_{2}\left(1320, I^{G} J^{P C}=1^{-} 2^{++}\right) \rightarrow \rho \pi \rightarrow 3 \pi$
- $\quad N(1440) \rightarrow \Delta \pi \rightarrow N \pi \pi$
- $\quad X(3872) \rightarrow J / \Psi \pi \pi$
- Calculating weak decay amplitudes involving 3 or more particles, e.g. $K \rightarrow 3 \pi, D \rightarrow 2 \pi, 4 \pi, \ldots$
- Determining NNN interactions

Methodology \& Status

2 \& 3 particle spectrum from LQCD

Quantization conditions

$$
\begin{aligned}
& \operatorname{det}\left[F_{2}^{-1}+\mathscr{K}_{2}\right] \\
& \operatorname{det}\left[F_{3}^{-1}+\mathscr{K}_{\mathrm{df}, 3}\right]
\end{aligned}
$$

Intermediate

scattering quantities
Integral equations in infinite volume

Scattering amplitudes

$$
\mathscr{M}_{2}, \mathscr{M}_{3}, \mathscr{M}_{23}, \ldots
$$

Methodology \& Status

Quantization conditions

$$
\begin{aligned}
& \operatorname{det}\left[F_{2}^{-1}+\mathscr{K}_{2}\right] \\
& \operatorname{det}\left[F_{3}^{-1}+\mathscr{K}_{\mathrm{df}, 3}\right]
\end{aligned}
$$

Intermediate scattering quantities

Integral equations in infinite volume

- Three approaches
- Relativistic [Briceño, Hansen, SRS]
- NREFT [Hammer, Pang, Rusetsky]
- Finite-volume Khuri-Treiman [Döring, Mai]
- Each have pros and cons
- Intermediate scattering quantities differ
- All require partial-wave truncation
- Similar challenges for numerical implementation

Status of relativistic approach

- Original work applied to scalars with G-parity \& no subchannel resonances [Hansen, SRS: 1408.5933 \& 1504.04248$]$

$$
\operatorname{det}\left[F_{3}^{-1}+\mathscr{K}_{\mathrm{df}, 3}\right]
$$

- Second major step: removing G-parity constraint, allowing $2 \leftrightarrow 3$ processes [Briceño, Hansen, SRS: 1701.07465]

$$
\operatorname{det}\left[\left(\begin{array}{cc}
F_{2} & 0 \\
0 & F_{3}
\end{array}\right)^{-1}+\left(\begin{array}{cc}
\mathscr{K}_{22} & \mathscr{K}_{23} \\
\mathscr{K}_{32} & \mathscr{K}_{\mathrm{df}, 33}
\end{array}\right)\right]=0
$$

Completing the formalism

- Second major step: removing G-parity constraint, allowing $2 \leftrightarrow 3$ processes [Briceño, Hansen, SRS: I70I.07465]

$$
\operatorname{det}\left[\left(\begin{array}{cc}
F_{2} & 0 \\
0 & F_{3}
\end{array}\right)^{-1}+\left(\begin{array}{cc}
\mathscr{K}_{22} & \mathscr{K}_{23} \\
\mathscr{K}_{32} & \mathscr{K}_{\mathrm{df}, 33}
\end{array}\right)\right]=0
$$

- Final major step: allowing subchannel resonance (i.e. pole in \mathcal{K}_{2}) [Briceño, Hansen, SRS: 1808.XXXXX]

$$
\operatorname{det}\left[\left(\begin{array}{ll}
F_{\tilde{2} \tilde{2}} & F_{\tilde{2} 3} \\
F_{3 \tilde{2}} & F_{33}
\end{array}\right)^{-1}+\left(\begin{array}{cc}
\mathscr{K}_{\mathrm{df} \tilde{2} \tilde{2}} & \mathscr{K}_{\mathrm{df}, \tilde{2} 3} \\
\mathscr{K}_{\mathrm{df}, 3 \tilde{3}} & \mathscr{K}_{\mathrm{df}, 33}
\end{array}\right)\right]=0
$$

Completing the formalism

- Second major step: removing G-parity constraint, allowing $2 \leftrightarrow 3$ processes [Briceño, Hansen, SRS: 1701.07465]

$$
\operatorname{det}\left[\left(\begin{array}{cc}
F_{2} & 0 \\
0 & F_{3}
\end{array}\right)^{-1}+\left(\begin{array}{cc}
\mathscr{K}_{22} & \mathscr{K}_{23} \\
\mathscr{K}_{32} & \mathscr{K}_{\mathrm{df}, 33}
\end{array}\right)\right]=0
$$

- Final major step: allowing subchannel resonance (i.e. pole in \mathcal{K}_{2}) [Briceño, Hansen, SRS: 1808.XXXXX]

Determined by K_{2} \& Lüscher finite-volume zeta functions

Infinite-volume quantities related to $\mathcal{M}_{2} \& \mathcal{M}_{3}$ by known integral equations

Formalism to-do list

- Multiple poles in K_{2}
- Nondegenerate particles with spin
- Connecting formalism for resonances to that for stable particles (e.g. raising m_{q} stabilizes ρ)

Formalism to-do list

- Multiple poles in K_{2}
- Nondegenerate particles with spin
- Connecting formalism for resonances to that for stable particles (e.g. raising m_{q} stabilizes ρ)

Outline

- Motivation
- Status
- Completing the formalism: including resonant subchannels
- Numerical results from the isotropic approximation
- Numerical results including higher partial waves

Isotropic low-energy approximation

[Briceño, Hansen \& SRS, I803.04I69]

- Scalar particles with G parity so no $2 \leftrightarrow 3$ transitions and no subchannel resonances (e.g. $3 \pi^{+}$)
- 2-particle interactions are purely s-wave, and determined by the scattering length alone (which can be arbitrarily negative, $a \rightarrow-\infty$)
- Point-like three-particle interaction $\mathcal{K}_{\mathrm{df}, 3}$, independent of momenta
- Reduces problem to I-dim. quantization condition, although intermediate matrices involve finite-volume momenta up to cutoff $|\mathrm{k}| \sim \mathrm{m}$
- Analog in our formalism of the approximations used in other approaches: [Hammer, Pang, Rusetsky, I706.07700; Mai \& Döring, I709.08222; Döring et al., I802.03362; Mai \& Döring, I807.04746]

Impact of $\mathrm{K}_{\mathrm{df}, 3}$ on spectrum

Local 3-particle interaction has significant effect on energies, especially in region of simulations ($\mathrm{mL}<5$), and thus can be determined

Volume-dependence of 3-body bound state

$a m=-10^{4} \& \mathrm{~m}^{2} \mathrm{~K}_{\mathrm{df}, 3^{\text {iso }}}=2500$ (unitary regime)

Bound state wave-function

- Work in unitary regime (ma=- 10^{4}) and tune $\mathcal{K}_{\mathrm{df}, 3}$ so 3 -body bound state at $\mathrm{E}_{\mathrm{B}}=2.98858 \mathrm{~m}$
- Solve integral equations numerically to determine $\mathcal{M}_{\mathrm{df}, \mathrm{B}}$ from $\mathcal{K}_{\mathrm{df}, \mathrm{B}}$
- Determine wavefunction from residue at bound-state pole

$$
\mathcal{M}_{\mathrm{df}, 3}^{(u, u)}(k, p) \sim-\frac{\Gamma^{(u)}(k) \Gamma^{(u)}(p)^{*}}{E^{2}-E_{B}^{2}}
$$

- Compare to analytic prediction from NRQM in unitary limit [Hansen \& SRS, 1609.043I7]

Bound state wave-function

Outline

- Motivation
- Status
- Completing the formalism: including resonant subchannels
- Numerical results from the isotropic approximation
- Numerical results including higher partial waves

Beyond the isotropic approximation

[Tyler Blanton, Fernando Romero-Lopez \& SRS, in progress]

- In 2-particle case, assume s-wave dominance at low energies, then systematically add in higher waves (suppressed by q^{21})
- We are implementing the same general approach for $\mathcal{K}_{\mathrm{df}, 3}$, making use of the facts that it is relativistically invariant and completely symmetric under initial- \& final-state permutations, and expanding about threshold
- We work in the G-parity invariant theory with 3 identical scalars, so the first channel beyond s-wave has I=2 (d-wave)

Beyond the isotropic approximation

$\Delta=s-9 m^{2}$
$\Delta_{1}=\left(p_{2}+p_{3}\right)^{2}-4 m^{2}$ etc.
$\Delta_{1}^{\prime}=\left(p_{2}^{\prime}+p_{3}^{\prime}\right)^{2}-4 m^{2}$ etc .
$t_{i j}=\left(p_{i}-p_{j}^{\prime}\right)^{2}$
$\mathscr{K}_{\mathrm{df}, 3}=\mathscr{K}_{\mathrm{df}, 3}^{\mathrm{iso}}(E)+c_{A} \mathscr{K}_{3 A}+c_{B} \mathscr{K}_{3 B}+\mathcal{O}\left(\Delta^{3}\right)$

$$
\mathscr{K}_{\mathrm{df}, 3}^{\text {iso }}=c_{0}+c_{1} \Delta+c_{2} \Delta^{2}
$$

c_{0} is the leading term-

$$
\mathscr{K}_{3 A}=\sum_{i=1}^{3}\left(\Delta_{i}^{2}+\Delta_{i}^{\prime 2}\right)
$$ only term kept in isotropic approx

$$
\mathscr{K}_{3 B}=\sum_{i, j=1}^{3} t_{i j}^{2}
$$

Only three coefficients needed at quadratic order:

$$
\mathbf{c}_{2}, c_{A} \& c_{B}
$$

Many fewer than the 7 angular variables $+s$ dependence present at arbitrary energy!

Decomposing into spectator/dimer basis

spectator momentum

$$
\mathscr{K}_{3 A}, \mathscr{K}_{3 B} \Rightarrow l^{\prime}=0,2 \& l=0,2
$$

For consistency, need $\mathcal{K}_{2}{ }^{(0)} \sim 1+\mathrm{q}^{2}+\mathrm{q}^{4} \& \mathcal{K}_{2}{ }^{(2)} \sim \mathrm{q}^{4}$

$$
\frac{1}{\mathscr{K}_{2}^{(0)}}=\frac{1}{16 \pi E_{2}}\left[\frac{1}{a_{0}}+r_{0} \frac{q^{2}}{2}+P_{0} r_{0}^{3} q^{4}\right] \quad \frac{1}{\mathscr{K}_{2}^{(2)}}=\frac{1}{16 \pi E_{2}} \frac{1}{q^{4}} \frac{1}{a_{2}^{5}}
$$

Implemented quantization condition through quadratic order, for $\mathbf{P}=0$, including projection onto overall cubic group irreps

First results including $l=2$

$$
\mathscr{K}_{\mathrm{df}, 3}=0, a_{0}=-10, r_{0}=0.5, P_{0}=0.5,-1.5 \leq a_{2} \leq 0.1
$$

What happens to
this level as
a_{2} is turned on?

More in progress!

$$
\begin{gathered}
\text { First results including } l=2 \\
\mathscr{K}_{\mathrm{df}, 3}=0, a_{0}=-10, r_{0}=0.5, P_{0}=0.5,-1.5 \leq a_{2} \leq 0.1 \\
\text { Spectrum for } \mathrm{mL}=5
\end{gathered}
$$

More in progress!

Any questions?

