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Outline

• Motivation

• Status

• Completing the formalism: including resonant subchannels

• Numerical results from the isotropic approximation

• Numerical results including higher partial waves
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Motivation
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• Calculating weak decay amplitudes involving 3 or more 
particles, e.g. K→3π, D→2π, 4π, …

�3

• Determining NNN interactions

• Studying resonances with three particle decay channels

•                                                         (no resonant subchannels)

•   

•    

•    

ω(782, IGJPC = 0−1−−) → 3π

a2(1320, IGJPC = 1−2++) → ρπ → 3π

N(1440) → Δπ → Nππ

X(3872) → J/Ψππ
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Methodology & Status

�4�4

Quantization conditions

2 & 3 particle
spectrum from LQCD

Integral equations in
infinite volume

Intermediate 
scattering quantities

det [F−1
2 + 𝒦2]

det [F−1
3 + 𝒦df,3]

Scattering amplitudes
ℳ2 , ℳ3 , ℳ23 , …

L

L

L
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Methodology & Status
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Integral equations in
infinite volume

Quantization conditions

det [F−1
2 + 𝒦2]

det [F−1
3 + 𝒦df,3]

• Three approaches  

• Relativistic [Briceño, Hansen, SRS]   
• NREFT [Hammer, Pang, Rusetsky]

• Finite-volume Khuri-Treiman [Döring, Mai]

• Each have pros and cons
• Intermediate scattering quantities differ

• All require partial-wave truncation

• Similar challenges for numerical implementation

Intermediate 
scattering quantities
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Status of relativistic approach
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det [F−1
3 + 𝒦df,3]

• Original work applied to scalars with G-parity & no 
subchannel resonances [Hansen, SRS: 1408.5933 & 1504.04248]

• Second major step: removing G-parity constraint, allowing 
2↔3 processes [Briceño, Hansen, SRS: 1701.07465]

det (F2 0
0 F3)

−1

+ (
𝒦22 𝒦23

𝒦32 𝒦df,33) = 0



S. Sharpe, “Progress on three-particle quantization condition” 7/26/18 @ Lattice 2018, MSU /19

Completing the formalism
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• Second major step: removing G-parity constraint, allowing 
2↔3 processes [Briceño, Hansen, SRS: 1701.07465]

• Final major step: allowing subchannel resonance (i.e. pole 
in K2) [Briceño, Hansen, SRS: 1808.XXXXX]

det (F2̃2̃ F2̃3
F32̃ F33)

−1

+ (
𝒦df,2̃2̃ 𝒦df,2̃3

𝒦df,32̃ 𝒦df,33) = 0

det (F2 0
0 F3)

−1

+ (
𝒦22 𝒦23

𝒦32 𝒦df,33) = 0
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Completing the formalism
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• Second major step: removing G-parity constraint, allowing 
2↔3 processes [Briceño, Hansen, SRS: 1701.07465]

• Final major step: allowing subchannel resonance (i.e. pole 
in K2) [Briceño, Hansen, SRS: 1808.XXXXX]

det (F2̃2̃ F2̃3
F32̃ F33)

−1

+ (
𝒦df,2̃2̃ 𝒦df,2̃3

𝒦df,32̃ 𝒦df,33) = 0

det (F2 0
0 F3)

−1

+ (
𝒦22 𝒦23

𝒦32 𝒦df,33) = 0

Infinite-volume 
quantities related to 

M2 & M3 by 
known integral 

equations

resonance + 
particle channel 
(not physical)

Determined by K2 & 
Lüscher finite-volume 

zeta functions 
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Formalism to-do list
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• Multiple poles in K2

• Nondegenerate particles with spin

• Connecting formalism for resonances to that for stable 
particles (e.g. raising mq stabilizes ρ)
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Formalism to-do list

�8�8

• Multiple poles in K2

• Nondegenerate particles with spin

• Connecting formalism for resonances to that for stable 
particles (e.g. raising mq stabilizes ρ)

All are straightforward!
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Outline

• Motivation

• Status

• Completing the formalism: including resonant subchannels

• Numerical results from the isotropic approximation

• Numerical results including higher partial waves
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Isotropic low-energy approximation
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• Scalar particles with G parity so no 2⟷3 transitions and no subchannel 
resonances (e.g. 3 π+)

• 2-particle interactions are purely s-wave, and determined by the 
scattering length alone (which can be arbitrarily negative, a→−∞)

• Point-like three-particle interaction Kdf,3, independent of momenta

• Reduces problem to 1-dim. quantization condition, although 
intermediate matrices involve finite-volume momenta up to cutoff |k|~m

• Analog in our formalism of the approximations used in other 
approaches: [Hammer, Pang, Rusetsky, 1706.07700; Mai & Döring, 
1709.08222; Döring et al., 1802.03362; Mai & Döring, 1807.04746]

[Briceño, Hansen & SRS, 1803.04169]
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Impact of Kdf,3 on spectrum
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FIG. 4. Finite-volume energy levels for ma = �10 and various negative values of m
2
K

iso

df,3. The left plot shows results from

two nonzero values of K
iso

df,3, as well reproducing the K
iso

df,3 = 0 results, and the noninteracting levels, from Fig. 2. Note that

the extent to which K
iso

df,3 shifts the energy depends significantly on the level being considered. The right panel magnifies the

region shown by the dashed rectangle in the left panel, displaying results for the lowest energy state from a larger number of

nonzero values of K
iso

df,3.

interactions, and thus push the levels up. We illustrate this in Fig. 4 for the case of a = �10 shown previously for
K

iso

df,3 = 0 in Fig. 2. The levels increase monotonically as K
iso

df,3 becomes more negative. Large magnitudes of K
iso

df,3 are

required to see a noticeable shift because, as we discuss in more detail below, for small values of K
iso

df,3 and a, the e↵ect

of the three-body contact interaction on the energy is suppressed by 1/L6. In this regard, we stress that such large
values of |K

iso

df,3| are not unphysical. Indeed, as can be seen from Eq. (26), the three-particle scattering amplitude is

finite in the |K
iso

df,3| ! 1 limit. This is analogous to the two particle sector where K2 ! 1 corresponds to the unitary
limit, M2 = i16⇡E⇤

2
/q⇤

2
.

One noticeable feature of Fig. 4 is the appearance of a “bump” in the curves around L = 5.5. If K
iso

df,3 is made even
more negative the spectral lines double back, which is an unphysical result. We discuss this issue further in Sec. V.
What we want to stress here is that, for most values of K

iso

df,3, a and L, the quantization condition in the isotropic
approximation gives reasonable results, with energy levels that are sensitive to the three-particle interaction.

A more striking example of this sensitivity is shown in Fig. 5, where we use the freedom to allow K
iso

df,3 to depend
on energy to model a three-particle resonance. The ansatz we use is

K
iso

df,3(E) = �
c ⇥ 103

E2 � M2

R

, (34)

with a “resonance mass” of MR = 3.5. This form is inspired by the standard Breit-Wigner parametrization of the
two-particle K matrix, although further investigation is needed to understand if this gives a physical description of
three-particle resonances. At the very least, however, it gives a unitary description of three-to-three scattering that, as
c ! 0, smoothly deforms to a decoupled system of a stable state with mass MR together with three-particle scattering
states. For nonzero values of c the two sectors couple and the avoided-level crossings characteristic of a resonance are
observed, with the gap increasing with c.

For a physical system described by this ansatz, fitting lattice-determined finite-volume levels would give constraints
on c, MR and the scattering length a. Consideration of how this ansatz for K

iso

df,3 converts to M3, and whether this
gives a useful three-particle resonance description, is a topic for future study.

C. Volume-dependence of the energy of a bound state

In this section we provide a quantitative test of our numerical results by studying the volume dependence of the
energy of a bound state EB(L) in the unitary regime, |a| � 1. This can be compared with the analytic result of

am=−10 (strong attractive interaction)
noninteracting

levels

Local 3-particle interaction has significant effect 
on energies, especially in region of simulations 

(mL<5), and thus can be determined
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Volume-dependence of 3-body bound state
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am=−104 & m2Kdf,3iso=2500 (unitary regime)
13
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FIG. 6. Finite-volume energy dependence for the bound state that arises for m
2
K

iso

df,3 = 2500 and ma = �10
4
. In all three

figures the solutions to the quantization condition are marked in orange, as points in (a) and (b) and as the curved solid line

in (c). The curving (turquoise) line in panel (a) is a fit of Eq. (35) (neglecting the higher-order corrections) to the data in

this panel. The same fit line is shown in panel (b) for lower values of mL, along with a horizontal, solid (red) line showing

the infinite-volume energy of the bound state EB(1). The horizontal dashed (black) line shows the threshold energy E = 3m.

Panel (c) displays EB(L) for smaller mL, along with the same two horizontal lines as in (b) and the asymptotic prediction.

scattering states. Extrapolating the results for K
iso

df,3 to subthreshold energies, one can use the quantization condition
to predict the volume dependence of the bound state. We see from Fig. 6(c) that, in the regime of mL accessible
to simulations, the finite-volume energy shifts are large, and the asymptotic formula does not hold. Thus the full
quantization condition is needed to remove the finite-volume shift and determine the infinite-volume binding energy.
We also stress that, in this regime, the bound-state energy is pushed so far below threshold that relativistic momenta
are sampled. Thus a relativistic formalism is required to reliably describe even the near threshold state.

D. Volume-dependence of the threshold-state energy

In this section we investigate in detail the energy of the threshold state. We have already shown examples of this
energy for various values of a in Fig. 3, and our aim here is to provide a detailed comparison with the predicted
large-volume behavior. The analytic prediction is

E(L) � 3 =
c3

L3
+

c4

L4
+

c5

L5
+

c̃6

L6
�

M3,thr

48L6
+ O

✓
1

L7

◆
, (36)

Need quantization condition to determine 
finite-volume effects for realistic values of mL

Prediction of asymptotic 
volume-dependence from 

NRQM 
[Meißner, Rîos, Rusetsky]
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Bound state wave-function
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• Work in unitary regime (ma=−104) and tune Kdf,3 so 3-body bound 
state at EB=2.98858 m 

• Solve integral equations numerically to determine Mdf,3 from Kdf,3

• Determine wavefunction from residue at bound-state pole

• Compare to analytic prediction from NRQM in unitary limit [Hansen & 
SRS, 1609.04317]

19

event. As k increases the scattered pair lies increasingly far below threshold. For a bound state, L(k) is related to
the Bethe-Salpeter amplitude, as discussed in the following subsection.

0.0 0.2 0.4 0.6 0.8 1.0 1.2

k/m

�1

0

1

2

L
(k

)

ma = 0.5
ma = 1.0

ma = �1.0
ma = �2.0

FIG. 13. L(k) versus k/m for choices of ma shown in the legend. Results using either choice of finite-volume quantity,

Eq. (A14) or (A15), and using any choice of mL � 50, lie on a common curve. Here we show the results using Eq. (A15) and

mL = 70. Note that, if a = 0, L(k) = 1/3 independent of k. For su�ciently large k, L(k) = 1/3 for all a, since the cuto↵

functions vanish and remove the correction term.

The results for F1
3

and L(k) can be combined to determine results for Mdf,3, using Eq. (45). We choose not to quote
results here since the symmetrization that is needed is complicated, and the results produced are not transparent.
We will, however, quote the corresponding results below when working at threshold.

B. Determining the wavefunction of the bound state

A specific application of the subthreshold relation between K
iso

df,3 and Mdf,3 is provided by the bound state studied

in Sec. III C. For the fixed values of K
iso

df,3 = 2500 and a = �104, one can calculate F1
3

and identify the infinite-volume
bound state pole in Mdf,3, as described in the previous subsection. Since this is equivalent to solving the quantization
condition K

iso

df,3 = �1/F iso

3
for asymptotically large volumes, one finds the same result for the infinite-volume bound-

state energy as from the fit in Sec. III C, namely EB = 2.98858 (corresponding to  = 0.106844).
The residues of the pole in Mdf,3 contain information about the Bethe-Salpeter amplitudes of the bound state.

Specifically, as discussed in Ref. [29], the unsymmetrized version of Mdf,3 takes the following factorized form near the
bound state

M
(u,u)

df,3 (k, p) ⇠ �
�(u)(k)�(u)(p)⇤

E2 � E2

B

. (46)

This assumes that pairwise scattering occurs only in the s-wave, as is the case in the isotropic approximation. The
quantity �(u)(k) is related to the Bethe-Salpeter amplitude by amputating and going on shell, as explained in detail
in Appendix B of Ref. [29]. We call �(u)(k) the residue function. Combining this expression with Eq. (45) we find
that �(u)(k) is proportional to L(k),

|�(u)(k)|2 = lim
E!EB

(E2

B � E2)
L(k)2

1/Kiso

df,3(E) + F1
3

(E)
. (47)

In our approach both F1
3

(E) and L(k) are determined by taking infinite-volume limits of appropriate finite-volume
quantities. For the purposes of extracting |�(u)(k)|2 it turns out to be convenient to define a finite-volume version as

|�(u)(k)|2(L) = lim
E!EB(L)

(E2

B(L) � E2)
LL(E, k, L)2

1/Kiso

df,3(E) + F iso

3
(E, L)

, (48)

20

where LL(E, k, L) is defined as the argument of the limit in Eq. (A15). Using this quantity, the infinite-volume limit,

|�(u)(k)|2 = lim
L!1

|�(u)(k)|2(L) , (49)

is approached more rapidly. Figure 14 shows numerical results for |�(u)(k)|2(L), calculated by setting E = EB(L)+�E
(with �E = �0.001) and using mL = 60, 65, 70. The results fall on a common curve giving confidence that we have
reached the infinite-volume limit.

In Ref. [29] we showed that, in NRQM in the unitary limit, the residue function is given by23.

|�(u)(k)NR|
2 = |c||A|

2
256⇡5/2

31/4

m22

k2(2 + 3k2/4)

sin2

⇣
s0 sinh�1

p
3k

2

⌘

sinh2 ⇡s0
2

, (50)

with s0 = 1.00624 and |c| = 96.351, and |A| the quantity entering into Eq. (35). This prediction is also plotted
in Fig. 14, and is in excellent agreement with our numerical results. We stress that this curve is a parameter-free
prediction and not a fit. However, we do expect there to be relativistic corrections to the relationship between �(u)(k)
and �(u)(k)NR. These should vary in magnitude between of O(2/m2) = O(1%) at k = 0 to of O(k/m) = O(1) for
k ⇡ m. These expectations are consistent with the small di↵erences we find.
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k/m

10�5
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10�1

101

|�
(u

) (
k
)|

2
⇥
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�

6 mL = 65
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mL = 70

FIG. 14. Momentum dependence of the magnitude squared of the bound-state residue function. The points are predictions

following from Eqs. (48) and (49), as described in the text. Di↵erent values of L lead to consistent results, indicating that

we have reached the infinite-volume limit. The curve shows the prediction of Eq. (50), with the value |A|
2
= 0.948 found in

Sec. III C.

What do learn from this agreement? The derivation of Eq. (50) in Ref. [29] does not use the quantization condition
in any way. Instead, it relies only on the definition of the relativistic scattering amplitude and the standard NRQM
determination of the bound-state wave function. Thus the agreement is not a consistency check, but rather shows
that the relation (45) reproduces the physics leading to the Efimov bound-state solution of the NRQM problem. This
is also true for the predicted volume dependence of the bound-state energy, discussed in Sec. III C, but here the test
is even more stringent because we are predicting a function and not just a number.

Finally, we note that the curves in Fig. 13 are proportional to the residue functions for bound states that are not in
the unitary regime. This is because, for all values of a < 1, one can tune K

iso

df,3 to give a bound state at E = 2.99, and

then use Eq. (47). Since the k dependence comes only from L(k), it follows that |�(u)(k)| / |L(k)|. We observe that,
away from the unitary regime, the dependence on k varies substantially with a. It would be interesting to compare
these results to predictions from NRQM.

23
It is interesting to note that the leading finite-volume dependence of the bound state energy, given in Eq. (35), is obtained using the

leading term in the expansion of the result presented here for �
(u)

(k) about the singularity at k
2
= �

2
. This leading term is given in

Eq. (100) of Ref. [29]. When evaluated on the real axis, however, it di↵ers substantially from the full result. Thus it is essential to use

the full form given here when studying the function for real k

Known constant

Known constant

Determined by fit to
volume-dependence of

bound-state energy



S. Sharpe, “Progress on three-particle quantization condition” 7/26/18 @ Lattice 2018, MSU /19

Bound state wave-function

�14�14
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where LL(E, k, L) is defined as the argument of the limit in Eq. (A15). Using this quantity, the infinite-volume limit,

|�(u)(k)|2 = lim
L!1

|�(u)(k)|2(L) , (49)

is approached more rapidly. Figure 14 shows numerical results for |�(u)(k)|2(L), calculated by setting E = EB(L)+�E
(with �E = �0.001) and using mL = 60, 65, 70. The results fall on a common curve giving confidence that we have
reached the infinite-volume limit.

In Ref. [29] we showed that, in NRQM in the unitary limit, the residue function is given by23.

|�(u)(k)NR|
2 = |c||A|

2
256⇡5/2

31/4

m22

k2(2 + 3k2/4)

sin2

⇣
s0 sinh�1

p
3k

2

⌘

sinh2 ⇡s0
2

, (50)

with s0 = 1.00624 and |c| = 96.351, and |A| the quantity entering into Eq. (35). This prediction is also plotted
in Fig. 14, and is in excellent agreement with our numerical results. We stress that this curve is a parameter-free
prediction and not a fit. However, we do expect there to be relativistic corrections to the relationship between �(u)(k)
and �(u)(k)NR. These should vary in magnitude between of O(2/m2) = O(1%) at k = 0 to of O(k/m) = O(1) for
k ⇡ m. These expectations are consistent with the small di↵erences we find.

0.0 0.2 0.4 0.6 0.8 1.0

k/m

10�5

10�3

10�1

101

|�
(u

) (
k
)|

2
⇥

10
�

6 mL = 65
mL = 60

mL = 70

FIG. 14. Momentum dependence of the magnitude squared of the bound-state residue function. The points are predictions

following from Eqs. (48) and (49), as described in the text. Di↵erent values of L lead to consistent results, indicating that

we have reached the infinite-volume limit. The curve shows the prediction of Eq. (50), with the value |A|
2
= 0.948 found in

Sec. III C.

What do learn from this agreement? The derivation of Eq. (50) in Ref. [29] does not use the quantization condition
in any way. Instead, it relies only on the definition of the relativistic scattering amplitude and the standard NRQM
determination of the bound-state wave function. Thus the agreement is not a consistency check, but rather shows
that the relation (45) reproduces the physics leading to the Efimov bound-state solution of the NRQM problem. This
is also true for the predicted volume dependence of the bound-state energy, discussed in Sec. III C, but here the test
is even more stringent because we are predicting a function and not just a number.

Finally, we note that the curves in Fig. 13 are proportional to the residue functions for bound states that are not in
the unitary regime. This is because, for all values of a < 1, one can tune K

iso

df,3 to give a bound state at E = 2.99, and

then use Eq. (47). Since the k dependence comes only from L(k), it follows that |�(u)(k)| / |L(k)|. We observe that,
away from the unitary regime, the dependence on k varies substantially with a. It would be interesting to compare
these results to predictions from NRQM.

23
It is interesting to note that the leading finite-volume dependence of the bound state energy, given in Eq. (35), is obtained using the

leading term in the expansion of the result presented here for �
(u)

(k) about the singularity at k
2
= �

2
. This leading term is given in

Eq. (100) of Ref. [29]. When evaluated on the real axis, however, it di↵ers substantially from the full result. Thus it is essential to use

the full form given here when studying the function for real k
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where LL(E, k, L) is defined as the argument of the limit in Eq. (A15). Using this quantity, the infinite-volume limit,

|�(u)(k)|2 = lim
L!1

|�(u)(k)|2(L) , (49)

is approached more rapidly. Figure 14 shows numerical results for |�(u)(k)|2(L), calculated by setting E = EB(L)+�E
(with �E = �0.001) and using mL = 60, 65, 70. The results fall on a common curve giving confidence that we have
reached the infinite-volume limit.

In Ref. [29] we showed that, in NRQM in the unitary limit, the residue function is given by23.

|�(u)(k)NR|
2 = |c||A|

2
256⇡5/2

31/4

m22

k2(2 + 3k2/4)

sin2

⇣
s0 sinh�1

p
3k

2

⌘

sinh2 ⇡s0
2

, (50)

with s0 = 1.00624 and |c| = 96.351, and |A| the quantity entering into Eq. (35). This prediction is also plotted
in Fig. 14, and is in excellent agreement with our numerical results. We stress that this curve is a parameter-free
prediction and not a fit. However, we do expect there to be relativistic corrections to the relationship between �(u)(k)
and �(u)(k)NR. These should vary in magnitude between of O(2/m2) = O(1%) at k = 0 to of O(k/m) = O(1) for
k ⇡ m. These expectations are consistent with the small di↵erences we find.
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FIG. 14. Momentum dependence of the magnitude squared of the bound-state residue function. The points are predictions

following from Eqs. (48) and (49), as described in the text. Di↵erent values of L lead to consistent results, indicating that

we have reached the infinite-volume limit. The curve shows the prediction of Eq. (50), with the value |A|
2
= 0.948 found in

Sec. III C.

What do learn from this agreement? The derivation of Eq. (50) in Ref. [29] does not use the quantization condition
in any way. Instead, it relies only on the definition of the relativistic scattering amplitude and the standard NRQM
determination of the bound-state wave function. Thus the agreement is not a consistency check, but rather shows
that the relation (45) reproduces the physics leading to the Efimov bound-state solution of the NRQM problem. This
is also true for the predicted volume dependence of the bound-state energy, discussed in Sec. III C, but here the test
is even more stringent because we are predicting a function and not just a number.

Finally, we note that the curves in Fig. 13 are proportional to the residue functions for bound states that are not in
the unitary regime. This is because, for all values of a < 1, one can tune K

iso

df,3 to give a bound state at E = 2.99, and

then use Eq. (47). Since the k dependence comes only from L(k), it follows that |�(u)(k)| / |L(k)|. We observe that,
away from the unitary regime, the dependence on k varies substantially with a. It would be interesting to compare
these results to predictions from NRQM.

23
It is interesting to note that the leading finite-volume dependence of the bound state energy, given in Eq. (35), is obtained using the

leading term in the expansion of the result presented here for �
(u)

(k) about the singularity at k
2
= �

2
. This leading term is given in

Eq. (100) of Ref. [29]. When evaluated on the real axis, however, it di↵ers substantially from the full result. Thus it is essential to use

the full form given here when studying the function for real k

mL→∞ gives infinite-volume result

0-parameter prediction

Works over many orders of magnitude 
to expected accuracy
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Outline

• Motivation

• Status

• Completing the formalism: including resonant subchannels

• Numerical results from the isotropic approximation

• Numerical results including higher partial waves
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Beyond the isotropic approximation

�16�16

• In 2-particle case, assume s-wave dominance at low energies, then 
systematically add in higher waves (suppressed by q2l)

• We are implementing the same general approach for Kdf,3, making use 
of the facts that it is relativistically invariant and completely symmetric 
under initial- & final-state permutations, and expanding about threshold

• We work in the G-parity invariant theory with 3 identical scalars, so the 
first channel beyond s-wave has l=2 (d-wave)

[Tyler Blanton, Fernando Romero-Lopez & SRS, in progress]

𝒦df,3

p1

p2

p3

p′�1

p′�2

p′�3
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Beyond the isotropic approximation
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𝒦df,3

p1

p2

p3

p′�1

p′�2

p′�3

𝒦df,3 = 𝒦iso
df,3(E)+cA𝒦3A+cB𝒦3B+𝒪(Δ3)

Δ = s − 9m2

tij = (pi − p′�j)2

Δ1 = (p2 + p3)2 − 4m2 etc .
Δ′�1 = (p′�2 + p′ �3)2 − 4m2 etc .

𝒦iso
df,3 = c0 + c1Δ + c2Δ2 c0 is the leading term—

only term kept in isotropic approx

c1 is coefficient of the only linear term𝒦3A =
3

∑
i=1

(Δ2
i + Δ′�2

i )

𝒦3B =
3

∑
i,j=1

t2
ij

Only three coefficients needed at quadratic order:
c2 , cA & cB 

Many fewer than the 7 angular variables + s dependence
 present at arbitrary energy!
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Decomposing into spectator/dimer basis

�18�18

𝒦df,3

p1

p2

p3

p′�1

p′�2

p′�3

Implemented quantization condition through quadratic order, 
for P=0, including projection onto overall cubic group irreps

spectator momentum

} Decompose into harmonics 
in dimer CM frame: l,m

spectator momentum

{ l’,m’

⇒   l’=0,2 & l=0,2𝒦3A , 𝒦3B

For consistency, need K2(0) ~1+q2 +q4 & K2(2) ~q4

1
𝒦(0)

2
=

1
16πE2 [ 1

a0
+ r0

q2

2
+ P0r3

0q4]
1

𝒦(2)
2

=
1

16πE2

1
q4

1
a5

2
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First results including l=2

�19�19

More in progress!

𝒦df,3 = 0 , a0 = − 10 , r0 = 0.5 , P0 = 0.5 , − 1.5 ≤ a2 ≤ 0.1
11
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�10�4m2
K

iso

df,3 = �10�4m2
K

iso

df,3 =

FIG. 4. Finite-volume energy levels for ma = �10 and various negative values of m
2
K

iso

df,3. The left plot shows results from

two nonzero values of K
iso

df,3, as well reproducing the K
iso

df,3 = 0 results, and the noninteracting levels, from Fig. 2. Note that

the extent to which K
iso

df,3 shifts the energy depends significantly on the level being considered. The right panel magnifies the

region shown by the dashed rectangle in the left panel, displaying results for the lowest energy state from a larger number of

nonzero values of K
iso

df,3.

interactions, and thus push the levels up. We illustrate this in Fig. 4 for the case of a = �10 shown previously for
K

iso

df,3 = 0 in Fig. 2. The levels increase monotonically as K
iso

df,3 becomes more negative. Large magnitudes of K
iso

df,3 are

required to see a noticeable shift because, as we discuss in more detail below, for small values of K
iso

df,3 and a, the e↵ect

of the three-body contact interaction on the energy is suppressed by 1/L6. In this regard, we stress that such large
values of |K

iso

df,3| are not unphysical. Indeed, as can be seen from Eq. (26), the three-particle scattering amplitude is

finite in the |K
iso

df,3| ! 1 limit. This is analogous to the two particle sector where K2 ! 1 corresponds to the unitary
limit, M2 = i16⇡E⇤

2
/q⇤

2
.

One noticeable feature of Fig. 4 is the appearance of a “bump” in the curves around L = 5.5. If K
iso

df,3 is made even
more negative the spectral lines double back, which is an unphysical result. We discuss this issue further in Sec. V.
What we want to stress here is that, for most values of K

iso

df,3, a and L, the quantization condition in the isotropic
approximation gives reasonable results, with energy levels that are sensitive to the three-particle interaction.

A more striking example of this sensitivity is shown in Fig. 5, where we use the freedom to allow K
iso

df,3 to depend
on energy to model a three-particle resonance. The ansatz we use is

K
iso

df,3(E) = �
c ⇥ 103

E2 � M2

R

, (34)

with a “resonance mass” of MR = 3.5. This form is inspired by the standard Breit-Wigner parametrization of the
two-particle K matrix, although further investigation is needed to understand if this gives a physical description of
three-particle resonances. At the very least, however, it gives a unitary description of three-to-three scattering that, as
c ! 0, smoothly deforms to a decoupled system of a stable state with mass MR together with three-particle scattering
states. For nonzero values of c the two sectors couple and the avoided-level crossings characteristic of a resonance are
observed, with the gap increasing with c.

For a physical system described by this ansatz, fitting lattice-determined finite-volume levels would give constraints
on c, MR and the scattering length a. Consideration of how this ansatz for K

iso

df,3 converts to M3, and whether this
gives a useful three-particle resonance description, is a topic for future study.

C. Volume-dependence of the energy of a bound state

In this section we provide a quantitative test of our numerical results by studying the volume dependence of the
energy of a bound state EB(L) in the unitary regime, |a| � 1. This can be compared with the analytic result of

What happens to
this level as

a2 is turned on?
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First results including l=2
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More in progress!

𝒦df,3 = 0 , a0 = − 10 , r0 = 0.5 , P0 = 0.5 , − 1.5 ≤ a2 ≤ 0.1

Energy in isotropic
approximation

(a2=0)
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Spectrum for mL=5

Energy lowered by
attractive l=2 interaction
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Any questions?
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