Progress on relativistic threeparticle quantization condition

Steve Sharpe University of Washington

In collaboration with Tyler Blanton (UW), Raul Briceño (ODU/Jlab), Max Hansen (CERN) and Fernando Romero-Lopez (Valencia)

> Based on arXiv:1803.04169 (published in PRD), arXiv:1808:XXXX, and work in progress

Outline

- Motivation
- Status
- Completing the formalism: including resonant subchannels
- Numerical results from the isotropic approximation
- Numerical results including higher partial waves

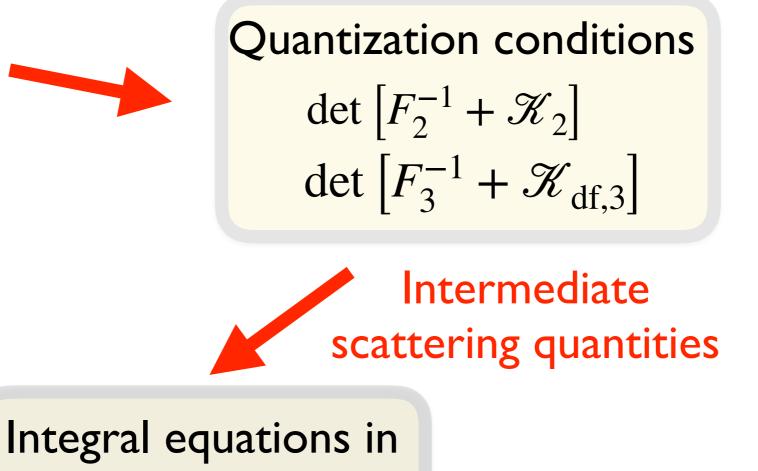
Motivation

- Studying resonances with three particle decay channels
 - $\omega(782, I^G J^{PC} = 0^{-1^{--}}) \rightarrow 3\pi$ (no resonant subchannels)
 - $a_2(1320, I^G J^{PC} = 1^- 2^{++}) \to \rho \pi \to 3\pi$
 - $N(1440) \rightarrow \Delta \pi \rightarrow N \pi \pi$
 - $X(3872) \rightarrow J/\Psi \pi \pi$
- Calculating weak decay amplitudes involving 3 or more particles, e.g. $K \rightarrow 3\pi$, $D \rightarrow 2\pi$, 4π , ...

Determining NNN interactions

Methodology & Status

2 & 3 particle spectrum from LQCD



infinite volume

Scattering amplitudes

 $\mathcal{M}_{2}, \mathcal{M}_{3}, \mathcal{M}_{23}, \ldots$

Methodology & Status

Quantization conditions

 $\det \left[F_2^{-1} + \mathscr{K}_2 \right]$ $\det \left[F_3^{-1} + \mathscr{K}_{df,3} \right]$

Intermediate scattering quantities

Integral equations in infinite volume

- Three approaches
 - Relativistic [Briceño, Hansen, SRS]
 - NREFT [Hammer, Pang, Rusetsky]
 - Finite-volume Khuri-Treiman [Döring, Mai]
- Each have pros and cons
 - Intermediate scattering quantities differ
 - All require partial-wave truncation
 - Similar challenges for numerical implementation

Status of relativistic approach

 Original work applied to scalars with G-parity & no subchannel resonances [Hansen, SRS: 1408.5933 & 1504.04248]

$$\det \left[F_3^{-1} + \mathcal{K}_{df,3} \right]$$

Second major step: removing G-parity constraint, allowing 2↔3 processes [Briceño, Hansen, SRS: 1701.07465]

$$\det \begin{bmatrix} \begin{pmatrix} F_2 & 0 \\ 0 & F_3 \end{pmatrix}^{-1} + \begin{pmatrix} \mathscr{K}_{22} & \mathscr{K}_{23} \\ \mathscr{K}_{32} & \mathscr{K}_{df,33} \end{pmatrix} \end{bmatrix} = 0$$

Completing the formalism

Second major step: removing G-parity constraint, allowing 2↔3 processes [Briceño, Hansen, SRS: 1701.07465]

$$\det \begin{bmatrix} \begin{pmatrix} F_2 & 0 \\ 0 & F_3 \end{pmatrix}^{-1} + \begin{pmatrix} \mathscr{K}_{22} & \mathscr{K}_{23} \\ \mathscr{K}_{32} & \mathscr{K}_{df,33} \end{pmatrix} \end{bmatrix} = 0$$

 Final major step: allowing subchannel resonance (i.e. pole in *K*₂) [Briceño, Hansen, SRS: 1808.XXXX]

$$\det \begin{bmatrix} \begin{pmatrix} F_{\tilde{2}\tilde{2}} & F_{\tilde{2}3} \\ F_{3\tilde{2}} & F_{33} \end{pmatrix}^{-1} + \begin{pmatrix} \mathscr{K}_{\mathrm{df},\tilde{2}\tilde{2}} & \mathscr{K}_{\mathrm{df},\tilde{2}3} \\ \mathscr{K}_{\mathrm{df},3\tilde{2}} & \mathscr{K}_{\mathrm{df},33} \end{pmatrix} \end{bmatrix} = 0$$

Completing the formalism

Second major step: removing G-parity constraint, allowing 2↔3 processes [Briceño, Hansen, SRS: 1701.07465]

$$\det \begin{bmatrix} \begin{pmatrix} F_2 & 0 \\ 0 & F_3 \end{pmatrix}^{-1} + \begin{pmatrix} \mathscr{K}_{22} & \mathscr{K}_{23} \\ \mathscr{K}_{32} & \mathscr{K}_{df,33} \end{pmatrix} \end{bmatrix} = 0$$

• Final major step: allowing subchannel resonance (i.e. pole in \mathcal{K}_2) [Briceño, Hansen, SRS: 1808.XXXX]

 $\det \begin{bmatrix} \begin{pmatrix} F_{\tilde{2}\tilde{2}} & F_{\tilde{2}3} \\ F_{3\tilde{2}} & F_{33} \end{pmatrix}^{-1} + \begin{pmatrix} \mathscr{K}_{\mathrm{df},\tilde{2}\tilde{2}} & \mathscr{K}_{\mathrm{df},\tilde{2}3} \\ \mathscr{K}_{\mathrm{df},3\tilde{2}} & \mathscr{K}_{\mathrm{df},33} \end{bmatrix} = 0$

Determined by K₂ &

Lüscher finite-volume

zeta functions

resonance + particle channel (not physical)

Infinite-volume quantities related to \mathcal{M}_2 & \mathcal{M}_3 by known integral equations

Formalism to-do list

- Multiple poles in K₂
- Nondegenerate particles with spin
- Connecting formalism for resonances to that for stable particles (e.g. raising m_q stabilizes ρ)

8 /19

Formalism to-do list

- Multiple poles in K₂
- Nondegenerate particles with spin
- Connecting formalism for resonances to that for stable particles (e.g. raising m_q stabilizes ρ)

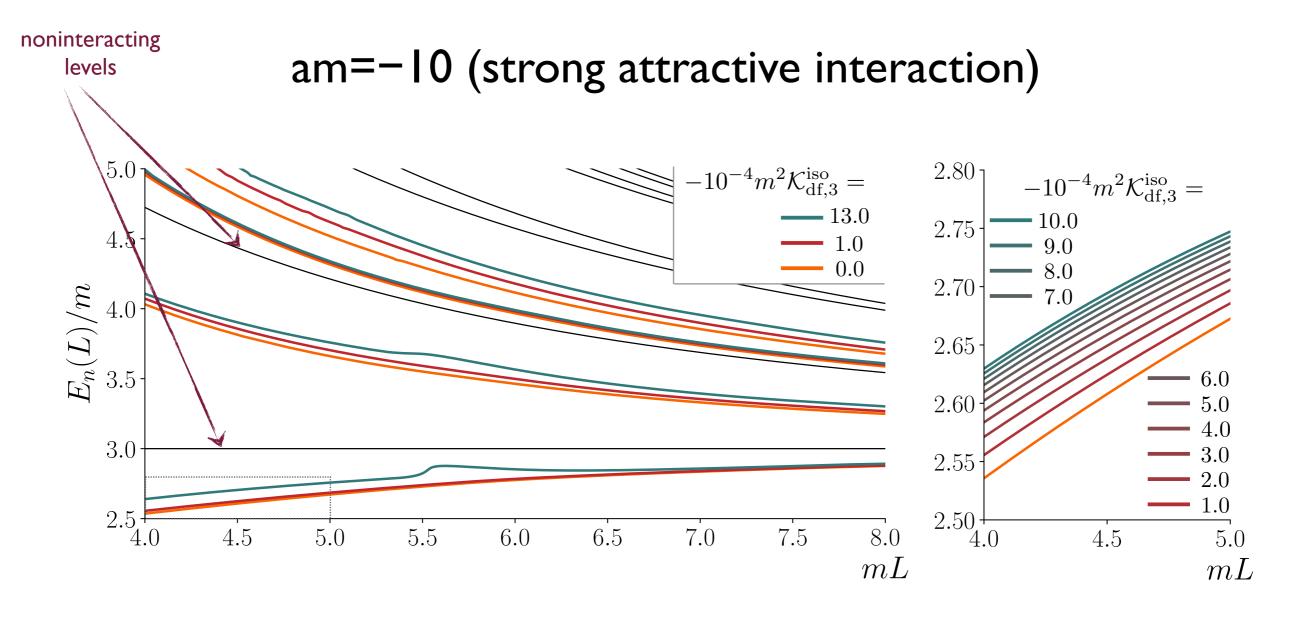
Outline

- Motivation
- Status
- Completing the formalism: including resonant subchannels
- Numerical results from the isotropic approximation
- Numerical results including higher partial waves

Isotropic low-energy approximation [Briceño, Hansen & SRS, 1803.04169]

- Scalar particles with G parity so no 2 \leftrightarrow 3 transitions and no subchannel resonances (e.g. 3 π ⁺)
- 2-particle interactions are purely s-wave, and determined by the scattering length alone (which can be arbitrarily negative, a→-∞)
- Point-like three-particle interaction $\mathcal{K}_{df,3}$, independent of momenta
- Reduces problem to 1-dim. quantization condition, although intermediate matrices involve finite-volume momenta up to cutoff |k|~m
- Analog in our formalism of the approximations used in other approaches: [Hammer, Pang, Rusetsky, 1706.07700; Mai & Döring, 1709.08222; Döring et al., 1802.03362; Mai & Döring, 1807.04746]

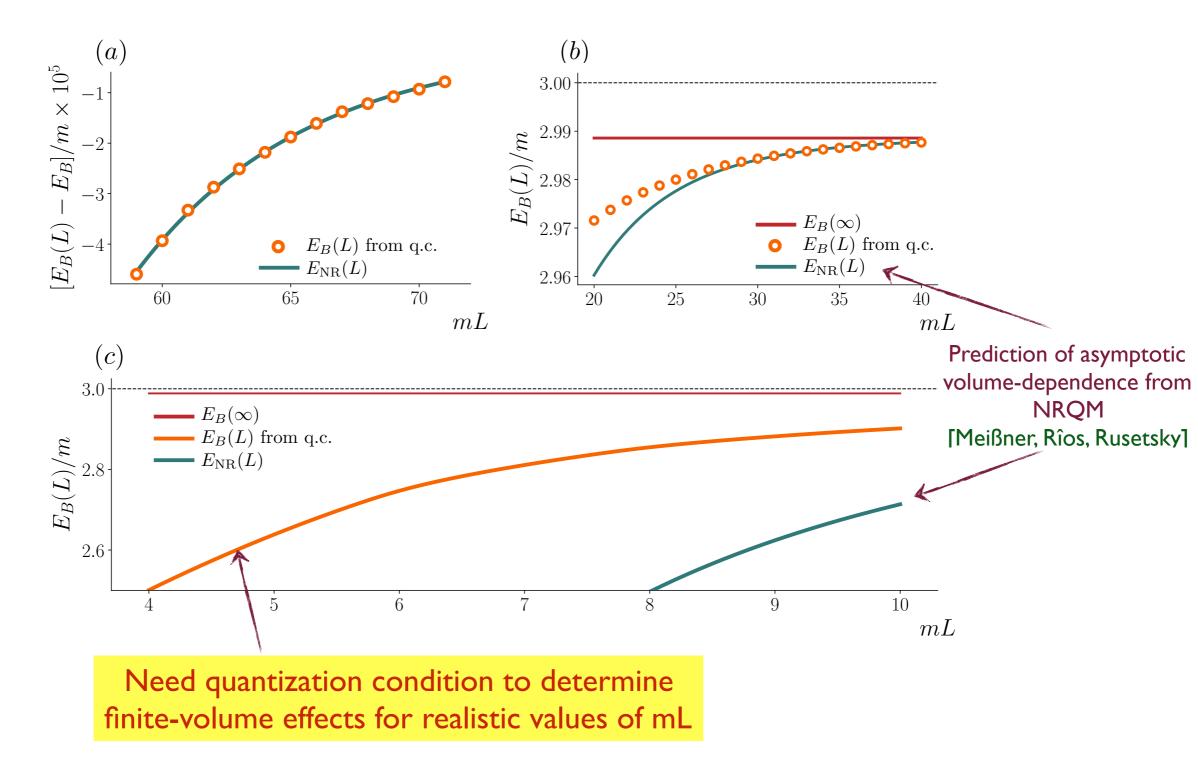
Impact of Kdf,3 on spectrum



Local 3-particle interaction has significant effect on energies, especially in region of simulations (mL<5), and thus can be determined

Volume-dependence of 3-body bound state

 $am = -10^4 \& m^2 K_{df,3}$ iso = 2500 (unitary regime)



S. Sharpe, "Progress on three-particle quantization condition" 7/26/18 @ Lattice 2018, MSU

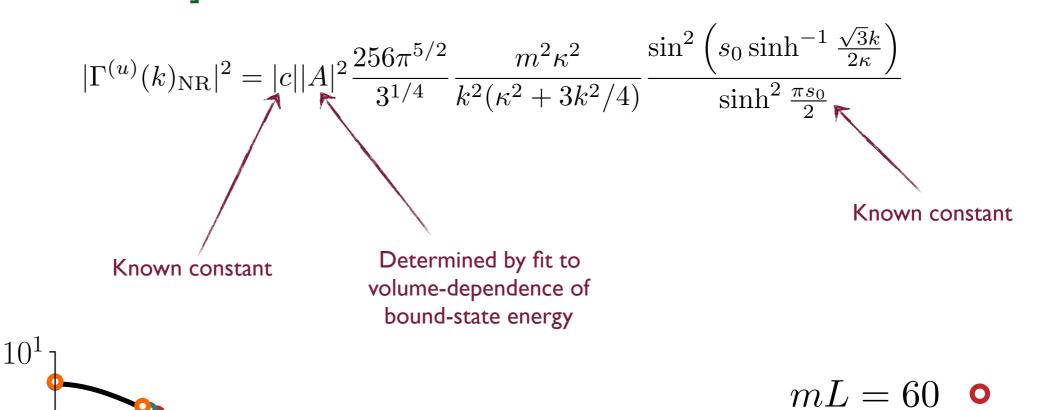
12/19

Bound state wave-function

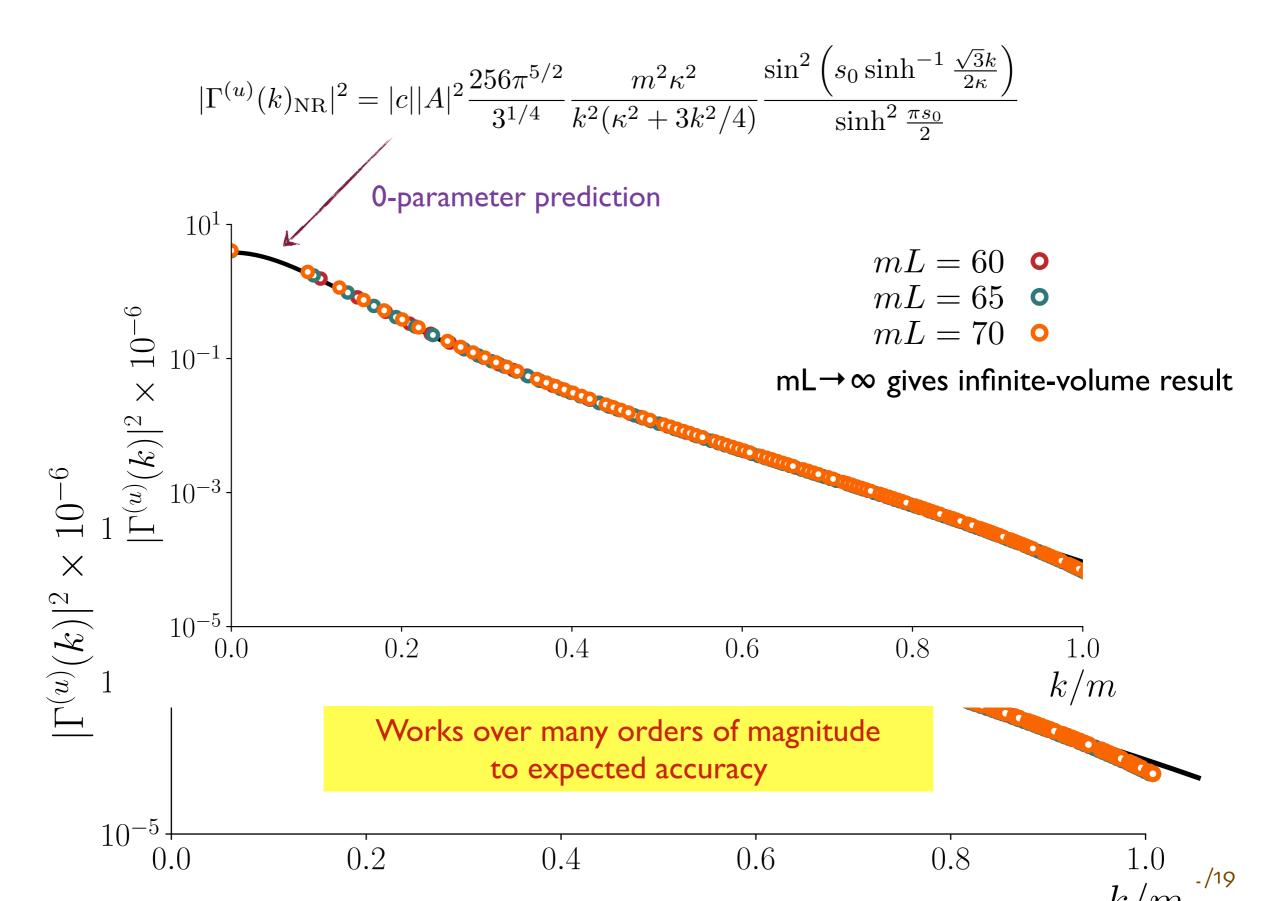
- Work in unitary regime (ma=-10⁴) and tune $\mathcal{K}_{df,3}$ so 3-body bound state at E_B=2.98858 m
- Solve integral equations numerically to determine $\mathcal{M}_{df,3}$ from $\mathcal{K}_{df,3}$
- Determine wavefunction from residue at bound-state pole

$$\mathcal{M}_{\rm df,3}^{(u,u)}(k,p) \sim -\frac{\Gamma^{(u)}(k)\Gamma^{(u)}(p)^{*}}{E^{2}-E_{B}^{2}}$$

Compare to analytic prediction from NRQM in unitary limit [Hansen & SRS, 1609.04317]



Bound state wave-function



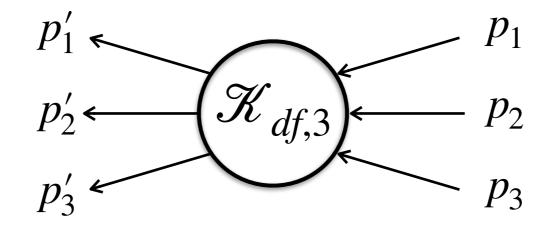
Outline

- Motivation
- Status
- Completing the formalism: including resonant subchannels
- Numerical results from the isotropic approximation
- Numerical results including higher partial waves

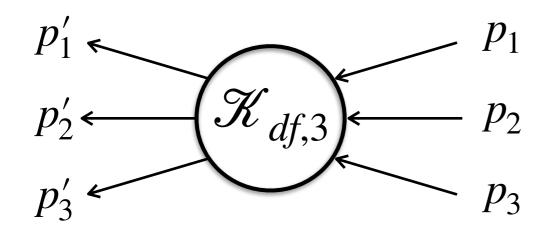
Beyond the isotropic approximation

[Tyler Blanton, Fernando Romero-Lopez & SRS, in progress]

- In 2-particle case, assume s-wave dominance at low energies, then systematically add in higher waves (suppressed by q²¹)
- We are implementing the same general approach for $\mathcal{K}_{df,3}$, making use of the facts that it is relativistically invariant and completely symmetric under initial- & final-state permutations, and expanding about threshold
- We work in the G-parity invariant theory with 3 identical scalars, so the first channel beyond s-wave has I=2 (d-wave)



Beyond the isotropic approximation



 $\Delta = s - 9m^{2}$ $\Delta_{1} = (p_{2} + p_{3})^{2} - 4m^{2} \text{ etc}.$ $\Delta'_{1} = (p'_{2} + p'_{3})^{2} - 4m^{2} \text{ etc}.$ $t_{ij} = (p_{i} - p'_{j})^{2}$

$$\mathscr{K}_{\mathrm{df},3} = \mathscr{K}_{\mathrm{df},3}^{\mathrm{iso}}(E) + c_A \mathscr{K}_{3A} + c_B \mathscr{K}_{3B} + \mathscr{O}(\Delta^3)$$

$$\mathscr{K}_{df,3}^{iso} = c_0 + c_1 \Delta + c_2 \Delta^2$$
$$\mathscr{K}_{3A} = \sum_{i=1}^{3} \left(\Delta_i^2 + \Delta_i^2 \right)$$
$$\underset{\mathscr{K}_{3B}}{\overset{3}{=}} \sum_{i=1}^{3} t_{ij}^2$$
Only
Many fermion

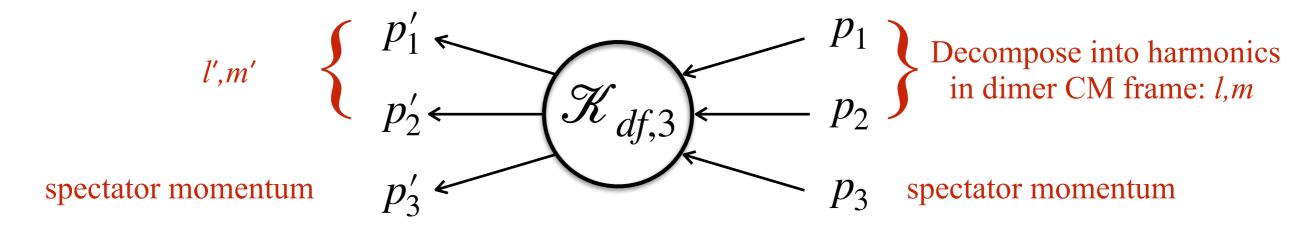
i, j = 1

 c_0 is the leading term only term kept in isotropic approx

 c_1 is coefficient of the <u>only</u> linear term

Only three coefficients needed at quadratic order: c_2 , $c_A & c_B$ Many fewer than the 7 angular variables + s dependence present at arbitrary energy!

Decomposing into spectator/dimer basis



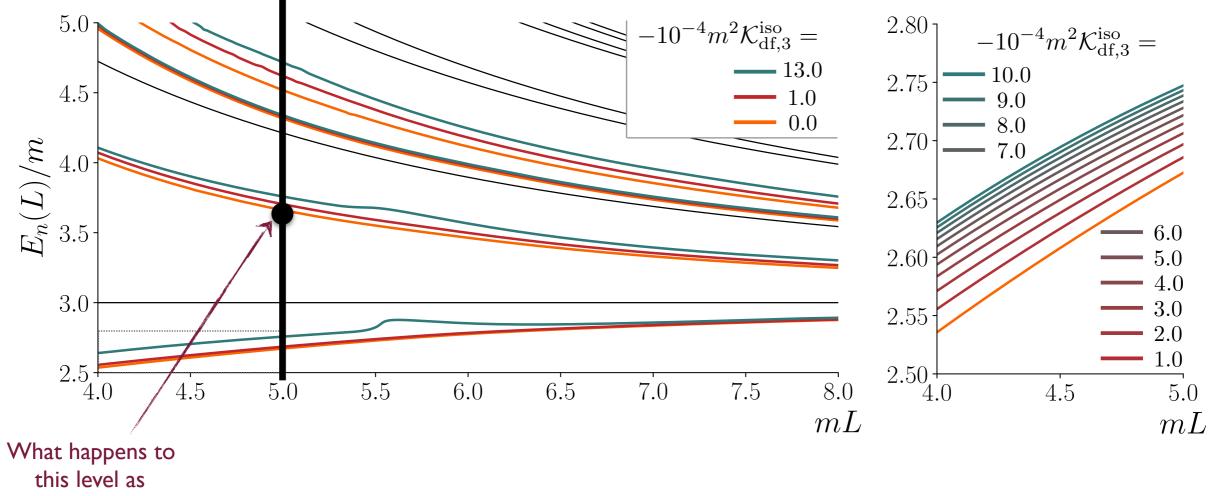
$$\mathscr{K}_{3A}, \mathscr{K}_{3B} \Rightarrow l'=0,2 \& l=0,2$$

For consistency, need $\mathcal{K}_{2^{(0)}} \sim 1 + q^2 + q^4 \& \mathcal{K}_{2^{(2)}} \sim q^4$

$$\frac{1}{\mathscr{K}_{2}^{(0)}} = \frac{1}{16\pi E_{2}} \left[\frac{1}{a_{0}} + r_{0} \frac{q^{2}}{2} + P_{0} r_{0}^{3} q^{4} \right] \qquad \qquad \frac{1}{\mathscr{K}_{2}^{(2)}} = \frac{1}{16\pi E_{2}} \frac{1}{q^{4}} \frac{1}{a_{2}^{5}}$$

Implemented quantization condition through quadratic order, for P=0, including projection onto overall cubic group irreps

First results including *l*=2 $\mathscr{K}_{df,3} = 0, a_0 = -10, r_0 = 0.5, P_0 = 0.5, -1.5 \le a_2 \le 0.1$



a₂ is turned on?

More in progress!

Any questions?