Calculation of Pion Valence Distribution from Hadronic Lattice Cross Sections

Raza Sabbir Sufian

in Collaboration with
J. Karpie, C. Egerer, D. Richards, J.W. Qiu, B. Chakraborty, R. Edwards, K. Orginos

Why Pion Valence Distribution

\star Pion valence distribution large-x behavior an unresolved problem
\star From pQCD and different models : $(1-x)^{2}$ or $(1-x)^{1}$?
\star Large- X region: small configuration constrained by confinement dynamics
de Téramond, Liu, RSS, Dosch, Brodsky, Deur PRL (2018)
Light-Front Holographic QCD

> Lattice QCD can help understanding large- x behavior and test different models

C12-15-006 experiment at JLab to explore large-x behavior

Calculations of Parton Distributions on the Lattice

* Hadronic tensor (K. F. Liu, PRL 1994, PRD 200)
* Position-space correlators (V. M. Braun \& D. Müller, EPJ ROO8)
* Inversion Method (A. Chambers, et al PRL 2017)
* Quasi PDFs (X. Ji, PRL 2013)
- Pseudo-PDFs (A. Radyushkin, PLB 2017)

Extensive efforts and significant achievements in recent years
Hadronic Lattice Cross Sections (LCSs) (Y. Q. Ma, J.-W. Qiu, PRL 2018)

Altogether, a community approach complementary to global fits of PDFs

What are Good Lattice "Cross Sections" (LCSs)

Single hadron matrix elements:

Ma \& Qiu
PRL (2018)

1. Calculable using lattice QCD with Euclidean time
2. Well defined continuum limit ($a \rightarrow 0$), UV finite
i.e. no power law divergence from Wilson line in non-local operator
3. Share the same perturbative collinear divergences with PDFs
4. Factorizable to PDFs with IR-safe hard coefficients with controllable power corrections

A good theory can identify its limitations - no free lunch

\star Equal time current insertion : sum over all energy modes can saturate phase space

Use heavy-light flavor changing current to suppress noise from spectator propagator in a systematic way

Simple and controllable approximations to problems

Good Lattice Cross Sections (LCSs)

Hadron matrix elements: $\sigma_{n}\left(\omega, \xi^{2}, P^{2}\right)=\langle P| T\left\{\mathcal{O}_{n}(\xi)\right\}|P\rangle$

$$
\omega \equiv P \cdot \xi
$$

Current-current correlators

$$
\mathcal{O}_{j_{1} j_{2}}(\xi) \equiv \xi^{d_{j_{1}}+d_{j_{2}}-2} Z_{j_{1}}^{-1} Z_{j_{2}}^{-1} j_{1}(\xi) j_{2}(0)
$$

d_{j} : Dimension of the current
Z_{j} : Renormalization constant of the current Z_{j} already known for the lattice ensembles being used
\star Different choices of currents

$$
\begin{aligned}
& j_{S}(\xi)=\xi^{2} Z_{S}^{-1}\left[\bar{\psi}_{q} \psi_{q}\right](\xi) \\
& j_{V^{\prime}}(\xi)=\xi Z_{V^{\prime}}^{-1}\left[\bar{\psi}^{(q)} \cdot \xi \psi_{\left(q^{\prime}\right]}\right](\xi), \\
& \quad \text { flavor changing current }
\end{aligned}
$$

$$
\begin{array}{ll}
j_{S}(\xi)=\xi^{2} Z_{S}^{-1}\left[\bar{\psi}_{q} \psi_{q}\right](\xi), & j_{V}(\xi)=\xi Z_{V}^{-1}\left[\bar{\psi}_{q} \gamma \cdot \xi \psi_{q}\right](\xi) \\
\left.j_{V^{\prime}}(\xi)=\xi Z_{V^{\prime}}^{-1}\left[\overline{\psi^{(q)}}\right)^{\gamma} \cdot \xi \psi_{\left(q^{\prime}\right]}\right](\xi), & j_{G}(\xi)=\xi^{3} Z_{G}^{-1}\left[-\frac{1}{4} F_{\mu \nu}^{c} F_{\mu \nu}^{c}\right](\xi), \ldots
\end{array}
$$

$$
\sigma^{D I S}\left(x, Q^{2}, \sqrt{s}\right)=\sum_{\alpha=q, \bar{q}, g} C_{\alpha}\left(x, \frac{Q^{2}}{\mu^{2}}, \sqrt{s}\right) \otimes f_{\alpha}\left(x, \mu^{2}\right)+\mathcal{O}\left(\frac{\Lambda_{Q C D}^{2}}{Q^{2}}\right)
$$

DIS

Parton Picture

Factorization scale μ describes which fluctuations should be included in the PDFs and which can be included in the hard scattering part

LCSs: Lattice Calculable + Renormalizable + Factorizable

$$
\sigma_{n}\left(\omega, \xi^{2}, P^{2}\right)=\sum_{a} \int_{-1}^{1} \frac{d x}{x} f_{a}\left(x, \mu^{2}\right) \times K_{n}^{a}\left(x \omega, \xi^{2}, x^{2} P^{2}, \mu^{2}\right)+\mathcal{O}\left(\xi^{2} \Lambda_{Q C D}^{2}\right)
$$

Nonperturbative PDFs of flavor $a=q, g$

$$
f_{\bar{a}}\left(x, \mu^{2}\right)=-f_{a}\left(-x, \mu^{2}\right)
$$

P and $\xi \rightarrow P \rightarrow \sqrt{s}$ Collision energy

 CollisionKinematics
$\xi \rightarrow \frac{1}{Q}$
Hard Probe hard hoefficients
\mathcal{O}_{n}

Dynamical
Features of LCSs
LCSs: Factorization holds for any finite ω and $P^{2} \xi^{2}$ if ξ is short distance

Lattice Calculation Setup

possible ξ on/off axis

$$
\begin{aligned}
& \left\langle\Pi\left(-p^{\prime}\right)\right| \mathcal{O}_{J_{1}}\left(x_{0}\right) \mathcal{O}_{J_{2}}(\xi)\left|\Pi\left(-p^{\prime}\right)\right\rangle= \\
& =\sum_{y, z} e^{i\left(p^{\prime} . z-p . y\right)}\left\langle\bar{q} \Gamma_{\Pi} q(z, T) \bar{q} J_{2} q\left(x_{0}+\xi, t\right) \bar{q} J_{1} q\left(x_{0}, t\right) \bar{q} \Gamma_{\Pi} q(y, 0)\right\rangle \\
& =\sum_{y, z} e^{i\left(p^{\prime} . z-p . y\right)} \operatorname{tr}\left[J_{2} D^{-1}\left(x_{0}+\xi, t ; x_{0}, t\right) J_{1} D^{-1}\left(x_{0}, t ; y, 0\right) \Gamma_{\Pi}\right. \\
& \left.\quad \times D^{-1}(y, 0 ; z, T) \Gamma_{\Pi} D^{-1}\left(z, T ; x_{0}+\xi, t\right)\right],
\end{aligned}
$$

\star Analysis shown here on isoClover with 450 Configurations
\star Lattice spacing $a \sim 0.127 \mathrm{fm}, m_{\pi} \approx 430 \mathrm{MeV}\left(32^{3} \times 96\right)$
\star Projected calculations with

$$
\begin{aligned}
& m_{\pi} \approx 380 \mathrm{MeV}, a \approx 0.09 \mathrm{fm}\left(32^{3} \times 64\right) \\
& m_{\pi} \approx 170 \mathrm{MeV}\left(64^{3} \times 128\right)
\end{aligned}
$$

Example Lattice Matrix Elements

About 10 different current-current correlations are being analyzed

Momentum smearing used for higher momentum

source-sink separation

Gunnar S. Bali, et al
(PRD 2016)

V-A matrix element

Idea by D. Richards for reliable extraction of matrix elements

Preliminary Lattice Results

* Only about $1 / 3$ statistics of $p=3,4,5$ data analyzed

V-V current correlation

* $\mathrm{p}=1$ (0.3 GeV) data deviates

Does the calculated correlation matrix lead to consistent description of pion PDF ?

$$
f(x) \approx A x^{\alpha}(1-x)^{\beta}(1+\gamma \sqrt{x}+\delta x)
$$

Preliminary Lattice Results

$\sigma_{n}\left(\omega, \xi^{2}, P^{2}\right)=\sum_{a} \int_{-1}^{1} \frac{d x}{x} f_{a}\left(x, \mu^{2}\right) \times K_{n}^{a}\left(x \omega, \xi^{2}, x^{2} P^{2}, \mu^{2}\right)+\mathcal{O}\left(\xi^{2} \Lambda_{Q C D}^{2}\right)$
calculate on lattice
extract PDF
PQCD
K_{n}^{a} being calculated at LO and NLO for different currents

* A combined fit to many LCSs on an ensemble will lead to precise determination of PDFs
e.g. like global fits to data from different experiments !

With these encouraging results, we are very excited !!!

Collaboration between lattice QCD and perturbative QCD

LCSs can be a tool to test different model calculations

Extensions such as kaon, nucleon PDFs on their way....

Thank You

Backup

DIS cross section is infrared divergent, and nonperturbative!

\square QCD factorization (approximation!)

Color entanglement Approximation

Quasi-Distribution of Pion

$$
m_{\pi} \simeq 300 \mathrm{MeV}
$$

LP3, arXiv:1804.01483

$$
\begin{align*}
& \tilde{f}_{\alpha}(x, \rho)=\frac{\alpha_{s} C_{F}}{2 \pi}\left\{\begin{array}{lc}
\frac{x-\rho}{(1-x)(1-\rho)}+\frac{2 x(2-x)-\rho(1+x)}{2(1-x)(1-\rho)^{3 / 2}} \ln \frac{2 x-1+\sqrt{1-\rho}}{2 x-1-\sqrt{1-\rho}} & x>1 \\
\frac{-3 x+2 x^{2}+\rho}{(1-x)(1-\rho)}+\frac{2 x(2-x)-\rho(1+x)}{2(1-x)(1-\rho)^{3 / 2}} \ln \frac{1+\sqrt{1-\rho}}{1-\sqrt{1-\rho}} & 0<x<1 \\
-\frac{x-\rho}{(1-x)(1-\rho)}-\frac{2 x(2-x)-\rho(1+x)}{2(1-x)(1-\rho)^{3 / 2}} \ln \frac{2 x-1+\sqrt{1-\rho}}{2 x-1-\sqrt{1-\rho}} & x<0
\end{array}\right. \\
& +\frac{\alpha_{s} C_{F}}{2 \pi}(1-\tau)\left\{\begin{array}{lc}
\frac{\rho\left(-3 x+2 x^{2}+\rho\right)}{2(1-x)(1-\rho)\left(4 x-4 x^{2}-\rho\right)}+\frac{-\rho}{4(1-\rho)^{3 / 2}} \ln \frac{2 x-1+\sqrt{1-\rho}}{2 x-1-\sqrt{1-\rho}} & x>1 \\
\frac{-x+\rho}{2(1-x)(1-\rho)}+\frac{-\rho}{4(1-\rho)^{3 / 2}} \ln \frac{1+\sqrt{1-\rho}}{1-\sqrt{1-\rho}} & 0<x<1, \\
-\frac{\rho\left(-3 x+2 x^{2}+\rho\right)}{2(1-x)(1-\rho)\left(4 x-4 x^{2}-\rho\right)}-\frac{-\rho}{4(1-\rho)^{3 / 2}} \ln \frac{2 x-1+\sqrt{1-\rho}}{2 x-1-\sqrt{1-\rho}} & x<0
\end{array},\right. \tag{44}\\
& \tilde{f}_{z}(x, \rho)=\frac{\alpha_{s} C_{F}}{2 \pi}\left\{\begin{array}{rll}
\frac{-2 \rho\left(1-7 x+6 x^{2}\right)-\rho^{2}(1+2 x)}{(1-\rho)^{2}\left(4 x-4 x^{2}-\rho\right)} g_{z \alpha}+\frac{4 x\left(1-3 x+2 x^{2}\right)-\rho\left(2-11 x+12 x^{2}-4 x^{3}\right)-\rho^{2}}{(1-x)(1-\rho)^{2}\left(4 x-4 x^{2}-\rho\right)} \\
+\left[\frac{\rho(4-6 x-\rho)}{2(1-\rho)^{5 / 2}} g_{z \alpha}+\frac{2-4 x+4 x^{2}-5 x \rho+2 x^{2} \rho+\rho^{2}}{\left.2(1-x)(1-\rho)^{5 / 2}\right] \ln \frac{2 x-1+\sqrt{1-\rho}}{2 x-1-\sqrt{1-\rho}}}\right. & x>1 \\
\frac{-2+2 x-\rho(1-4 x)}{(1-\rho)^{2}} g_{z \alpha}+\frac{(-1+2 x)(2-3 x+\rho)}{(1-x)(1-\rho)^{2}} & x \\
+\left[\frac{\rho(4-6 x-\rho)}{2(1-\rho)^{5 / 2}} g_{z \alpha}+\frac{\left.2-4 x+4 x^{2}-5 x \rho+2 x^{2} \rho+\rho^{2}\right] \ln \frac{1+\sqrt{1-\rho}}{1-\sqrt{1-\rho}}}{2(1-x)(1-\rho)^{5 / 2}}\right] & 0<x<1 \\
-\frac{-2 \rho\left(1-7 x+6 x^{2}\right)-\rho^{2}(1+2 x)}{(1-\rho)^{2}\left(4 x-4 x^{2}-\rho\right)} g_{z \alpha}-\frac{4 x\left(1-3 x+2 x^{2}\right)-\rho\left(2-11 x+12 x^{2}-4 x^{3}\right)-\rho^{2}}{(1-x)(1-\rho)^{2}\left(4 x-4 x^{2}-\rho\right)} & \\
-\left[\frac{\rho(4-6 x-\rho)}{2(1-\rho)^{5 / 2}} g_{z \alpha}+\frac{\left.\left.2-4 x+4 x^{2}-5 x \rho+2 x^{2} \rho+\rho^{2}\right] \ln \frac{2 x-1+\sqrt{1-\rho}}{2(1-x)(1-\rho)^{5 / 2}}\right]}{} \quad x<0\right.
\end{array}\right.
\end{align*}
$$

$$
\begin{aligned}
& \frac{-4 x \rho\left(3-5 x+2 x^{2}\right)+\rho^{2}\left(4-3 x+4 x^{2}-4 x^{3}\right)-\rho^{3}}{(1-x)(1-\rho)^{2}\left(4 x-4 x^{2}-\rho\right)} g_{z \alpha}+\frac{-2 x \rho(5-6 x)+\rho^{2}(3-2 x)}{(1-\rho)^{2}\left(4 x-4 x^{2}-\rho\right)} \\
& +\left[\frac{-2 \rho\left(1-4 x+2 x^{2}\right)-\rho^{2}\left(2-x+2 x^{2}\right)+\rho^{3}}{2(1-x)(1-\rho)^{5 / 2}} g_{z \alpha}+\frac{-\rho(2-6 x+\rho)}{2(1-\rho)^{5 / 2}}\right] \ln \frac{2 x-1+\sqrt{1-\rho}}{2 x-1-\sqrt{1-\rho}} \quad x>1 \\
& \tilde{f}_{p}(x, \rho)=\frac{\alpha_{s} C_{F}}{2 \pi}\left\{\begin{array}{ll}
\frac{\rho(1-2 x)(4-3 x-\rho)}{(1-x)(1-\rho)^{2}} g_{z \alpha}+\frac{-2 x+3 \rho-4 x \rho}{(1-\rho)^{2}} & 0<x<1 \\
& +\left[\frac{-\rho\left(2-8 x+4 x^{2}\right)-\rho^{2}\left(2-x+2 x^{2}\right)+\rho^{3}}{2(1-x)(1-\rho)^{5 / 2}} g_{z \alpha}+\frac{-\rho(2-6 x+\rho)}{2(1-\rho)^{5 / 2}}\right] \ln \frac{1+\sqrt{1-\rho}}{1-\sqrt{1-\rho}}
\end{array} \quad 0<1\right. \\
& +\frac{\alpha_{s} C_{F}}{2 \pi}(1-\tau) \begin{cases}\frac{16 x \rho\left(1-3 x+2 x^{2}\right)+4 x^{2} \rho^{2}(3-2 x)-\rho^{3}(5-2 x)+2 \rho^{4}}{2(1-\rho)^{2}\left(4 x-4 x^{2}-\rho\right)^{2}} g_{z \alpha} & \\
+\frac{\rho(1-2 x)\left[16 x(1-x)-2 \rho\left(1+2 x-2 x^{2}\right)-\rho^{2}\right]}{2(1-\rho)^{2}\left(4 x-4 x^{2}-\rho\right)^{2}}+\frac{-\rho(4-\rho)\left(g_{z \alpha}+1\right)}{4(1-\rho)^{5 / 2}} \ln \frac{2 x-1+\sqrt{1-\rho}}{2 x-1-\sqrt{1-\rho}} & x>1 \\
\frac{\rho(5-2 \rho) g_{z \alpha}+2+\rho}{2(1-\rho)^{2}}+\frac{-\rho(4-\rho)\left(g_{z \alpha}+1\right)}{4(1-\rho)^{5 / 2}} \ln \frac{1+\sqrt{1-\rho}}{1-\sqrt{1-\rho}} & 0<x<1 \\
-\frac{16 x \rho\left(1-3 x+2 x^{2}\right)+4 x^{2} \rho^{2}(3-2 x)-\rho^{3}(5-2 x)+2 \rho^{4}}{2(1-\rho)^{2}\left(4 x-4 x^{2}-\rho\right)^{2}} g_{z \alpha} & \\
-\frac{\rho(1-2 x)\left[16 x\left(1-x-2 \rho\left(1+2 x-2 x^{2}\right)-\rho^{2}\right]\right.}{2(1-\rho)^{2}\left(4 x-4 x^{2}-\rho\right)^{2}}-\frac{-\rho(4-\rho)\left(g_{z \alpha}+1\right)}{4(1-\rho)^{5 / 2}} \ln \frac{2 x-1+\sqrt{1-\rho}}{2 x-1-\sqrt{1-\rho}} & x<0\end{cases}
\end{aligned}
$$

ξ^{2} be small but not vanishing

Apply OPE to non-local op $\mathcal{O}_{n}(\xi)$

$$
\begin{aligned}
\sigma_{n}\left(\omega, \xi^{2}, P^{2}\right)= & \sum_{J=0} \sum_{a} W_{n}^{(J, a)}\left(\xi^{2}, \mu^{2}\right) \xi^{\nu_{1}} \cdots \xi^{\nu_{J}} \\
& \times\langle P| \mathcal{O}_{\nu_{1} \cdots \nu_{J}}^{(J, a)}\left(\mu^{2}\right)|P\rangle
\end{aligned}
$$

$\mathcal{O}_{\nu_{1} \cdots \nu_{J}}^{(J, a)}\left(\mu^{2}\right)$ Local, symmetric , traceless op
transit of one parton from a hadron across the other hadron. The probability of undergoing a hard scattering event with a large momentum transfer Q is proportional to the probability for finding two partons, one from each proton, to be within a transverse separation of $1 / Q$ of each other. Multi-parton hard scattering is suppressed because there is a small probability of finding more than two partons within a short distance of $1 / Q$ when the two flat disks collide. Soft final-state interactions should not change the cross section, as long as we make

Drell-Yan process

$$
\pi^{-}+p \rightarrow \mu^{+}+\mu^{-}+X
$$

