$K\pi$ scattering with partial wave mixing & isovector excited meson spectroscopy

Ruairí Brett

Carnegie Mellon University

July 26, 2018

with John Bulava, Jacob Fallica, Andrew Hanlon, Ben Hörz, Colin Morningstar

- study low-lying meson spectrum using lattice QCD:
- use $2 \to 2$ Lüscher formalism to calculate hadron-hadron scattering amplitudes
 - *P*-wave $K\pi$ scattering: $K^*(892)$ resonance parameters
 - S-wave $K\pi$ scattering: $K_0^*(800)/\kappa$ resonance parameters
 - include partial wave mixing for $\ell \leq 2$
- qualitative spectrum extraction with large operator bases
 - single- and multi-hadron interpolating operators in large volumes
 - identify $\overline{q}q$ -dominated states, mixed states, etc.

Finite Volume Spectra

Momentum quantised \rightarrow No continuum of scattering states

$$p = \frac{2\pi}{L}d$$

Infinite volume physics from LQCD

Lüscher: Relationship between finite volume spectrum and infinite volume scattering matrix

- Quantisation condition:

 $\det[\widetilde{K}^{-1} - B] = 0$

- For each $E_{\rm cm}$ in spectrum, determinant gives single relation to entire scattering matrix
 - \Rightarrow Exactly solvable for single channel, single partial wave
 - $\Rightarrow \ \ell \text{ mixing/coupled decay channels requires parameterisation of } K$ and a fit (determinant residual method)

Ruairí Brett	Latti
--------------	-------

Infinite volume physics from LQCD

Lüscher: Relationship between finite volume spectrum and infinite volume scattering matrix

- Quantisation condition:

$$\widetilde{K}_{\ell}^{-1} = \left(\frac{q_{\rm cm}}{m_{\pi}}\right)^{2\ell+1} \cot \delta_l \quad \det[\widetilde{K}^{-1} - B] = 0$$

- For each $E_{\rm cm}$ in spectrum, determinant gives single relation to entire scattering matrix
 - \Rightarrow Exactly solvable for single channel, single partial wave
 - $\Rightarrow \ \ell \text{ mixing/coupled decay channels requires parameterisation of } K$ and a fit (determinant residual method)

Lattice 2018

Infinite volume physics from LQCD

Lüscher: Relationship between finite volume spectrum and infinite volume scattering matrix

- Quantisation condition:

$$\widetilde{K}_{\ell}^{-1} = \left(\frac{q_{\rm cm}}{m_{\pi}}\right)^{2\ell+1} \cot \delta_l \quad \det[\widetilde{K}^{-1} - \underline{B}] = 0$$

box matrix: known function of $(E_{\rm cm}, L)$

- For each $E_{\rm cm}$ in spectrum, determinant gives single relation to entire scattering matrix
 - \Rightarrow Exactly solvable for single channel, single partial wave
 - $\Rightarrow \ \ell \text{ mixing/coupled decay channels requires parameterisation of } K$ and a fit (determinant residual method)

|--|--|--|

Infinite volume physics from LQCD

Lüscher: Relationship between finite volume spectrum and infinite volume scattering matrix

- Quantisation condition:

$$\widetilde{K}_{\ell}^{-1} = \left(\frac{q_{\rm cm}}{m_{\pi}}\right)^{2\ell+1} \cot \delta_l \quad \det[\widetilde{K}^{-1} - \underline{B}] = 0$$

box matrix: known function of $(E_{\rm cm}, L)$

- For given $\pmb{P},\,(\widetilde{K}^{-1}-B)$ block diagonal in little group irrep, simplifies determinant calculation

- \Rightarrow All infinite volume physics in \widetilde{K}^{-1} , finite volume in B
- \Rightarrow *B* describes how partial waves fit into cubic volume
- \Rightarrow Software available containing *B* elements up to $\ell = 6$

Вı	ıairí	- B	re	t t

$K\pi$ energies in finite volume

- ensemble: $32^3 \times 256$, $m_\pi \approx 230$ MeV, $m_\pi L \sim 4.4$
- 13 single-hadron (K) and 33 two-hadron $(K\pi)$ interpolating operators
- all-to-all propagation using stochastic LapH method

[RB, J Bulava, J Fallica, A Hanlon, B Hörz, C Morningstar; Nucl.Phys. B932 (2018)]

Ruairí Brett Lattice 2018 Ju	6, 2018 5/12
------------------------------	--------------

Decay of $K^*(892)$

- large $32^3 \times 256$ anisotropic lattice, $m_{\pi} \approx 230$ MeV
- included $\ell=0,1,2$ partial waves
- fit forms

$$(\widetilde{K}^{-1})_{11} = \frac{6\pi E_{\rm cm}}{g^2 m_{\pi}} \left(\frac{m_{K^*}^2}{m_{\pi}^2} - \frac{E_{\rm cm}^2}{m_{\pi}^2} \right) \qquad (\widetilde{K}^{-1})_{22} = \frac{-1}{m_{\pi}^5 a_2} (\widetilde{K}^{-1})_{00}^{\rm lin} = a_{\rm l} + b_{\rm l} E_{\rm cm}, \quad (\widetilde{K}^{-1})_{00}^{\rm quad} = a_{\rm q} + b_{\rm q} E_{\rm cm}^2, (\widetilde{K}^{-1})_{00}^{\rm ERE} = \frac{-1}{m_{\pi} a_0} + \frac{m_{\pi} r_0}{2} \frac{q_{\rm cm}^2}{m_{\pi}^2}, \qquad (\widetilde{K}^{-1})_{00}^{\rm BW}$$

- results

$$\frac{m_{K^*}}{m_{\pi}} = 3.808(18), \quad g = 5.33(20), \quad m_{\pi}a_0 = -0.353(25),$$
$$m_{\pi}^5 a_2 = -0.0013(68), \qquad \chi^2/\text{dof} = 1.42$$

[RB, J Bulava, J Fallica, A Hanlon, B Hörz, C Morningstar; Nucl. Phys. B932 (2018)]

Ruairí Brett

Decay of $K^*(892)$

- plots of *P*-wave and *S*-wave phase shift $(\tilde{E} = (E_{\rm cm} - m_K)/m_{\pi})$ - $\kappa(\ell = 0)$ fit: Breit-Wigner or effective range

Ruairí Bret

Decay of $K^*(892)$

- summary of lattice calculations of $K^*(892)$ resonance parameters
- phenomenological values shown as astericks

Excited meson spectroscopy

- As $m_{\pi}^{\text{lat}} \to m_{\pi}^{\text{phys}}$, fewer resonances lie below 3- & 4-particle thresholds
 - ⇒ three particle quantisation condition in development (see talks by Mai (Mon) & Sharpe (Today))
- For now, want to get a qualitative look at the excited meson spectrum
 - $\Rightarrow\,$ Using large bases of single- and two-hadron interpolating operators, extract excited spectrum
 - \Rightarrow Identify $\overline{q}q$ -like states by operator overlaps
- Using anisotropic $N_f = 2 + 1$ ensembles with clover fermions:

⇒ (32³|230): 412 configs 32³ × 256, $m_{\pi} \approx 230$ MeV, $m_{\pi}L \sim 4.4$ ⇒ (24³|390): 551 configs 24³ × 128, $m_{\pi} \approx 390$ MeV, $m_{\pi}L \sim 5.7$ I = 1, S = 0 meson spectroscopy (*preliminary*) eg. T_{1u}^+ with $m_{\pi} \sim 230$ MeV

- 73 (9 SH + 64 MH) interpolating operators: full spectrum

I = 1, S = 0 meson spectroscopy (*preliminary*) eg. T_{1u}^+ with $m_{\pi} \sim 230$ MeV

- (9) SH operators only: experiment vs $\overline{q}q$

I = 1, S = 0 meson spectroscopy (*preliminary*) eg. T_{1u}^+ with $m_{\pi} \sim 230$ MeV

- full operator basis: experiment vs $\overline{q}q$

- meson-meson scattering at a mature stage
 - moving towards physical point results large volumes required
- meson-baryon scattering now possible: eg. $N\pi$: PRD 97, 014506 (2018)
- successful results depend on time-slice to time-slice quark propagators needed for temporal correlators involving two-hadron operators
 - Stochastic LapH method (minimal volume scaling)
- $box\ matrix$ formulation/software handles partial wave mixing & coupled channels

Conclusions - Spectroscopy

- goal: qualitative description of resonant spectrum
- high computational cost for large operator bases
 - Stochastic LapH method
- $\overline{q}q$ states straightforward but many interesting states not well described
 - \Rightarrow hybrids
 - \Rightarrow molecular states
 - ⇒ ...
- effective Hamiltonian models to further explore content of finite volume QCD spectrum

S-wave $K\pi$ amplitude: $K_0^*(800)$

$$\frac{m_{K^*}}{m_{\pi}} = 3.808(18), \quad g = 5.33(20), \quad m_{\pi}a_0 = -0.353(25),$$
$$m_{\pi}^5 a_2 = -0.0013(68), \qquad \chi^2/\text{dof} = 1.42$$

- based on LO ERE, $m_{\pi}a_0 < 0$ suggests virtual bound state
- however, NLO parameters give $1 2r_0/a_0 = -8.9(2.4)$ which must be > 0 for a (real or virtual) bound state
- zeros of $q_{\rm cm} \cot \delta_0 i q_{\rm cm}$: $m_R/m_\pi = 4.66(13) 0.87(18)i$
 - consistent with BW fit
- better energy resolution & careful analytic continuation required

[RB, J Bulava, J Fallica, A Hanlon, B Hörz, C Morningstar; Nucl.Phys. B932 (2018)]

I = 1, S = 0 meson spectroscopy (*preliminary*)

Ruairí Bret

Lattice 2018

July 26, 2018 15/12

18 16/12

Extracting finite volume spectra

- Signal of interest: deviation of finite-volume two hadron levels from non-interacting counterparts
 - \Rightarrow Extract energy difference from

$$R_n(t) = \frac{\widetilde{C}_n(t)}{C_\pi(\boldsymbol{d}_\pi^2, t)C_K(\boldsymbol{d}_K^2, t)} \to A_n e^{-\Delta E_n t}$$

- Reconstruct:

$$a_t E_n = a_t \Delta E_n + \sqrt{a_t^2 m_\pi^2 + \left(\frac{2\pi a_s}{\xi L}\right)^2} \, d_\pi^2 + \sqrt{a_t^2 m_K^2 + \left(\frac{2\pi a_s}{\xi L}\right)^2} \, d_K^2.$$

- Where ΔE_n is small, these ratio fits generally have smaller excited state contamination than direct fits to $\widetilde{C}_n(t)$

Ratio fits

Each row corresponds to the three fits for a single level specified in the left column as $(\Lambda(d^2), E_n)$, denoting the *n*th level in finite volume irrep Λ with total momentum d^2 .

Decay of $\rho(770)$

- initially applied to $P\text{-wave }I=1\ \rho \rightarrow \pi \pi$ system
- now have included $\ell = 1, 3, 5$ partial waves
- large $32^3 \times 256$ anisotropic lattice, $m_{\pi} \approx 230$ MeV
- fit forms (first ever inclusion of $\ell = 5$ in lattice QCD):

$$(\widetilde{K}^{-1})_{11} = \frac{6\pi E_{\rm cm}}{g^2 m_{\pi}} \left(\frac{m_{\rho}^2}{m_{\pi}^2} - \frac{E_{\rm cm}^2}{m_{\pi}^2}\right)$$
$$(\widetilde{K}^{-1})_{33} = \frac{1}{m_{\pi}^7 a_3} \qquad (\widetilde{K}^{-1})_{55} = \frac{1}{m_{\pi}^{11} a_5}$$

- results

$$\frac{m_{\rho}}{m_{\pi}} = 3.349(25), \ g = 5.97(27), \ m_{\pi}^7 a_3 = -0.00021(100), m_{\pi}^{11} a_5 = -0.00006(24), \ \chi^2/\text{dof} = 1.15$$

[J Bulava, B Fahy, B Hörz, K J Juge, C Morningstar, CH Wong; NPB 910, 842 (2016)]
[C Morningstar, J Bulava, B Singha, RB, J Fallica, A Hanlon, B Hörz; NPB 924, 477 (2017)]

Ruairí Bret

Decay of $\rho(770)$

- $\ell = 1, 3, 5$ phase shifts

[J Fallica, PhD Thesis (2017)]

Ruairí Brett

July 26, 2018 24/12

Decay of $\Delta(1232)$

- included $\ell = 1$ wave only (for now)
- large $48^3 \times 128$ isotropic lattice, $m_\pi \approx 280$ MeV, $a \sim 0.076$ fm
- Breit-Wigner fit gives $g_{\Delta N\pi} = 19.0(4.7)$ in agreement with experiment ~ 16.9

[CW Andersen, J Bulava, B Hörz, C Morningstar; PRD 97, 014506 (2018)]

Ruairí Brett

