$K \pi$ scattering with partial wave mixing \& isovector excited meson spectroscopy

Ruairí Brett

Carnegie Mellon University

$$
\text { July 26, } 2018
$$

with John Bulava, Jacob Fallica, Andrew Hanlon, Ben Hörz, Colin Morningstar

Motivations \& Overview

- study low-lying meson spectrum using lattice QCD:
- use $2 \rightarrow 2$ Lüscher formalism to calculate hadron-hadron scattering amplitudes
- P-wave $K \pi$ scattering: $K^{*}(892)$ resonance parameters
- S-wave $K \pi$ scattering: $K_{0}^{*}(800) / \kappa$ resonance parameters
- include partial wave mixing for $\ell \leq 2$
- qualitative spectrum extraction with large operator bases
- single- and multi-hadron interpolating operators in large volumes
- identify $\bar{q} q$-dominated states, mixed states, etc.

Finite Volume Spectra

Scattering process: eg.
$I=1 \quad \pi \pi \rightarrow \pi \pi$

∞-volume

Finite volume
 E

Momentum quantised \rightarrow No continuum of scattering states

$$
\boldsymbol{p}=\frac{2 \pi}{L} \boldsymbol{d}
$$

Lüscher Quantisation

Infinite volume physics from LQCD

Lüscher: Relationship between finite volume spectrum and infinite volume scattering matrix

- Quantisation condition:

$$
\operatorname{det}\left[\widetilde{K}^{-1}-B\right]=0
$$

- For each E_{cm} in spectrum, determinant gives single relation to entire scattering matrix
\Rightarrow Exactly solvable for single channel, single partial wave
$\Rightarrow \ell$ mixing/coupled decay channels requires parameterisation of \widetilde{K} and a fit (determinant residual method)
[Morningstar et al.; Nucl. Phys. B 924 (2017)]

Lüscher Quantisation

Infinite volume physics from LQCD

Lüscher: Relationship between finite volume spectrum and infinite volume scattering matrix

- Quantisation condition:

$$
\widetilde{K}_{\ell}^{-1}=\left(\frac{q_{\mathrm{cm}}}{m_{\pi}}\right)^{2 \ell+1} \stackrel{\cot \delta_{l}}{\operatorname{det}[}\left[\widetilde{K}^{-1}-B\right]=0
$$

- For each E_{cm} in spectrum, determinant gives single relation to entire scattering matrix
\Rightarrow Exactly solvable for single channel, single partial wave
$\Rightarrow \ell$ mixing/coupled decay channels requires parameterisation of \widetilde{K} and a fit (determinant residual method)
[Morningstar et al.; Nucl. Phys. B 924 (2017)]

Lüscher Quantisation

Infinite volume physics from LQCD

Lüscher: Relationship between finite volume spectrum and infinite volume scattering matrix

- Quantisation condition:

$$
\widetilde{K}_{\ell}^{-1}=\left(\frac{q_{\mathrm{cm}}}{m_{\pi}}\right)^{2 \ell+1} \stackrel{\cot \delta_{l} \quad \operatorname{det}}{ }[\underbrace{\substack{\text { box matrix: known function of }\left(E_{\mathrm{cm}}, L\right)}}_{\substack{\widetilde{K}^{-1}}}
$$

- For each E_{cm} in spectrum, determinant gives single relation to entire scattering matrix
\Rightarrow Exactly solvable for single channel, single partial wave
$\Rightarrow \ell$ mixing/coupled decay channels requires parameterisation of \widetilde{K} and a fit (determinant residual method)
[Morningstar et al.; Nucl. Phys. B 924 (2017)]

Lüscher Quantisation

Infinite volume physics from LQCD

Lüscher: Relationship between finite volume spectrum and infinite volume scattering matrix

- Quantisation condition:

$$
\widetilde{K}_{\ell}^{-1}=\left(\frac{q_{\mathrm{cm}}}{m_{\pi}}\right)^{2 \ell+1} \stackrel{\cot \delta_{l} \quad \operatorname{det}}{ }[\underbrace{\substack{\text { box matrix: known function of }\left(E_{\mathrm{cm}}, L\right)}}_{\substack{\widetilde{K}^{-1}}}
$$

- For given P, $\left(\widetilde{K}^{-1}-B\right)$ block diagonal in little group irrep, simplifies determinant calculation
\Rightarrow All infinite volume physics in \widetilde{K}^{-1}, finite volume in B
$\Rightarrow B$ describes how partial waves fit into cubic volume
\Rightarrow Software available containing B elements up to $\ell=6$
[Morningstar et al.; Nucl. Phys. B 924 (2017)]

$K \pi$ energies in finite volume

- ensemble: $32^{3} \times 256, m_{\pi} \approx 230 \mathrm{MeV}, m_{\pi} L \sim 4.4$
- 13 single-hadron (K) and 33 two-hadron $(K \pi)$ interpolating operators
- all-to-all propagation using stochastic LapH method

[RB, J Bulava, J Fallica, A Hanlon, B Hörz, C Morningstar; Nucl.Phys. B932 (2018)]

Decay of $K^{*}(892)$

- large $32^{3} \times 256$ anisotropic lattice, $m_{\pi} \approx 230 \mathrm{MeV}$
- included $\ell=0,1,2$ partial waves
- fit forms

$$
\begin{aligned}
\left(\widetilde{K}^{-1}\right)_{11} & =\frac{6 \pi E_{\mathrm{cm}}}{g^{2} m_{\pi}}\left(\frac{m_{K^{*}}^{2}}{m_{\pi}^{2}}-\frac{E_{\mathrm{cm}}^{2}}{m_{\pi}^{2}}\right) \quad\left(\widetilde{K}^{-1}\right)_{22}=\frac{-1}{m_{\pi}^{5} a_{2}} \\
\left(\widetilde{K}^{-1}\right)_{00}^{\mathrm{lin}} & =a_{1}+b_{1} E_{\mathrm{cm}}, \quad\left(\widetilde{K}^{-1}\right)_{00}^{\mathrm{quad}}=a_{\mathrm{q}}+b_{\mathrm{q}} E_{\mathrm{cm}}^{2}, \\
\left(\widetilde{K}^{-1}\right)_{00}^{\mathrm{ERE}} & =\frac{-1}{m_{\pi} a_{0}}+\frac{m_{\pi} r_{0}}{2} \frac{\boldsymbol{q}_{\mathrm{cm}}^{2}}{m_{\pi}^{2}}, \quad\left(\widetilde{K}^{-1}\right)_{00}^{\mathrm{BW}}
\end{aligned}
$$

- results

$$
\begin{aligned}
\frac{m_{K^{*}}}{m_{\pi}}=3.808(18), \quad g & =5.33(20), \quad m_{\pi} a_{0}=-0.353(25) \\
m_{\pi}^{5} a_{2} & =-0.0013(68), \quad \chi^{2} / \operatorname{dof}=1.42
\end{aligned}
$$

[RB, J Bulava, J Fallica, A Hanlon, B Hörz, C Morningstar; Nucl.Phys. B932 (2018)]

Decay of $K^{*}(892)$

- plots of P-wave and S-wave phase shift $\left(\tilde{E}=\left(E_{\mathrm{cm}}-m_{K}\right) / m_{\pi}\right)$
- $\kappa(\ell=0)$ fit: Breit-Wigner or effective range

Decay of $K^{*}(892)$

- summary of lattice calculations of K^{*} (892) resonance parameters
- phenomenological values shown as astericks

Excited meson spectroscopy

- As $m_{\pi}^{\text {lat }} \rightarrow m_{\pi}^{\text {phys }}$, fewer resonances lie below 3 - \& 4-particle thresholds
\Rightarrow three particle quantisation condition in development (see talks by Mai (Mon) \& Sharpe (Today))
- For now, want to get a qualitative look at the excited meson spectrum
\Rightarrow Using large bases of single- and two-hadron interpolating operators, extract excited spectrum
\Rightarrow Identify $\bar{q} q$-like states by operator overlaps
- Using anisotropic $N_{f}=2+1$ ensembles with clover fermions:

$$
\begin{aligned}
& \Rightarrow\left(32^{3} \mid 230\right): 412 \text { configs } 32^{3} \times 256, m_{\pi} \approx 230 \mathrm{MeV}, m_{\pi} L \sim 4.4 \\
& \Rightarrow\left(24^{3} \mid 390\right): 551 \text { configs } 24^{3} \times 128, m_{\pi} \approx 390 \mathrm{MeV}, m_{\pi} L \sim 5.7
\end{aligned}
$$

$I=1, S=0$ meson spectroscopy (preliminary)

 eg. $T_{1 u}^{+}$with $m_{\pi} \sim 230 \mathrm{MeV}$- 73 ($9 \mathrm{SH}+64 \mathrm{MH}$) interpolating operators: full spectrum

$I=1, S=0$ meson spectroscopy (preliminary) eg. $T_{1 u}^{+}$with $m_{\pi} \sim 230 \mathrm{MeV}$

- (9) SH operators only: experiment vs $\bar{q} q$

$I=1, S=0$ meson spectroscopy (preliminary) eg. $T_{1 u}^{+}$with $m_{\pi} \sim 230 \mathrm{MeV}$

- full operator basis: experiment vs $\bar{q} q$

Conclusions - Scattering

- meson-meson scattering at a mature stage
- moving towards physical point results - large volumes required
- meson-baryon scattering now possible: eg. $N \pi$: PRD 97, 014506 (2018)
- successful results depend on time-slice to time-slice quark propagators needed for temporal correlators involving two-hadron operators
- Stochastic LapH method (minimal volume scaling)
- box matrix formulation/software handles partial wave mixing \& coupled channels

Conclusions - Spectroscopy

- goal: qualitative description of resonant spectrum
- high computational cost for large operator bases
- Stochastic LapH method
- $\bar{q} q$ states straightforward but many interesting states not well described
\Rightarrow hybrids
\Rightarrow molecular states
\Rightarrow...
- effective Hamiltonian models to further explore content of finite volume QCD spectrum

S-wave $K \pi$ amplitude: $K_{0}^{*}(800)$

$$
\begin{aligned}
\frac{m_{K^{*}}}{m_{\pi}}=3.808(18), \quad g & =5.33(20), \quad m_{\pi} a_{0}=-0.353(25), \\
m_{\pi}^{5} a_{2} & =-0.0013(68), \quad \chi^{2} / \operatorname{dof}=1.42
\end{aligned}
$$

- based on LO ERE, $m_{\pi} a_{0}<0$ suggests virtual bound state
- however, NLO parameters give $1-2 r_{0} / a_{0}=-8.9(2.4)$ which must be >0 for a (real or virtual) bound state
- zeros of $\boldsymbol{q}_{\mathrm{cm}} \cot \delta_{0}-i \boldsymbol{q}_{\mathrm{cm}}: m_{R} / m_{\pi}=4.66(13)-0.87(18) i$
- consistent with BW fit
- better energy resolution \& careful analytic continuation required
[RB, J Bulava, J Fallica, A Hanlon, B Hörz, C Morningstar; Nucl.Phys. B932 (2018)]

$I=1, S=0$ meson spectroscopy (preliminary)

$I=1, S=0, A_{1 u}^{+}$spectrum (preliminary)

$I=1, S=0, A_{1 u}^{+}$spectrum (preliminary)

$I=1, S=0, A_{2 u}^{+}$spectrum (preliminary)

$I=1, S=0, E_{u}^{+}$spectrum (preliminary)

$I=1, S=0, E_{u}^{+}$spectrum (preliminary)

$I=1, S=0, T_{1 u}^{+}$spectrum (preliminary)

$I=1, S=0, T_{2 u}^{+}$spectrum (preliminary)

Extracting finite volume spectra

- Signal of interest: deviation of finite-volume two hadron levels from non-interacting counterparts
\Rightarrow Extract energy difference from

$$
R_{n}(t)=\frac{\widetilde{C}_{n}(t)}{C_{\pi}\left(\boldsymbol{d}_{\pi}^{2}, t\right) C_{K}\left(\boldsymbol{d}_{K}^{2}, t\right)} \rightarrow A_{n} e^{-\Delta E_{n} t}
$$

- Reconstruct:

$$
a_{t} E_{n}=a_{t} \Delta E_{n}+\sqrt{a_{t}^{2} m_{\pi}^{2}+\left(\frac{2 \pi a_{s}}{\xi L}\right)^{2} d_{\pi}^{2}}+\sqrt{a_{t}^{2} m_{K}^{2}+\left(\frac{2 \pi a_{s}}{\xi L}\right)^{2} d_{K}^{2}}
$$

- Where ΔE_{n} is small, these ratio fits generally have smaller excited state contamination than direct fits to $\widetilde{C}_{n}(t)$

Ratio fits

Each row corresponds to the three fits for a single level specified in the left column as ' $\Lambda\left(d^{2}\right), E_{n}$ ', denoting the nth level in finite volume irrep Λ with total momentum d^{2}.

Decay of $\rho(770)$

- initially applied to P-wave $I=1 \rho \rightarrow \pi \pi$ system
- now have included $\ell=1,3,5$ partial waves
- large $32^{3} \times 256$ anisotropic lattice, $m_{\pi} \approx 230 \mathrm{MeV}$
- fit forms (first ever inclusion of $\ell=5$ in lattice QCD):

$$
\begin{aligned}
& \left(\widetilde{K}^{-1}\right)_{11}=\frac{6 \pi E_{\mathrm{cm}}}{g^{2} m_{\pi}}\left(\frac{m_{\rho}^{2}}{m_{\pi}^{2}}-\frac{E_{\mathrm{cm}}^{2}}{m_{\pi}^{2}}\right) \\
& \left(\widetilde{K}^{-1}\right)_{33}=\frac{1}{m_{\pi}^{7} a_{3}} \quad\left(\widetilde{K}^{-1}\right)_{55}=\frac{1}{m_{\pi}^{11} a_{5}}
\end{aligned}
$$

- results

$$
\begin{aligned}
& \frac{m_{\rho}}{m_{\pi}}=3.349(25), g=5.97(27), m_{\pi}^{7} a_{3}=-0.00021(100) \\
& m_{\pi}^{11} a_{5}=-0.00006(24), \chi^{2} / \text { dof }=1.15
\end{aligned}
$$

[J Bulava, B Fahy, B Hörz, K J Juge, C Morningstar, CH Wong; NPB 910, 842 (2016)] [C Morningstar, J Bulava, B Singha, RB, J Fallica, A Hanlon, B Hörz; NPB 924, 477 (2017)]

Decay of $\rho(770)$

- $\ell=1,3,5$ phase shifts

[J Fallica, PhD Thesis (2017)]

Decay of $\Delta(1232)$

- included $\ell=1$ wave only (for now)
- large $48^{3} \times 128$ isotropic lattice, $m_{\pi} \approx 280 \mathrm{MeV}, a \sim 0.076 \mathrm{fm}$
- Breit-Wigner fit gives $g_{\Delta N \pi}=19.0(4.7)$ in agreement with experiment ~ 16.9

[CW Andersen, J Bulava, B Hörz, C Morningstar; PRD 97, 014506 (2018)]

