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Few-body physics of contact interactions

• Nuclear physics (pionless effective field theory)
• Ultra-cold gases
• Trapped atoms
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1D Systems

• Amazing experimental progress on ultra-cold atoms
confined to 1D has renewed interest in 1D systems (Guan,
Batchelor, and Lee 2013)

• The effective 1D interaction strength can be tuned as
desired through Feshbach resonances (Chin et al. 2010)

• Systems with effective SU(N) internal symmetry
• Experiments with mixed species have given access to
mass-imbalanced systems, such as 6Li and 40K
(Trenkwalder et al. 2011)

• Analytic solutions (for example, (Yang 1967; Gaudin 1967))
are known for special configurations in 1D, but the general
case of spin and mass-imbalanced is unsolved.
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Sign problems in 1D system

• Traditional auxiliary field MC has sign problems even in 1D:
Good testing ground for new approaches to solve sign
problems.

• Examples:
• (Alexandru et al. 2017): Thimble approach for 1D Thirring
model

• (Ayyar, Chandrasekharan, and Rantaharju 2018): Fermion
bag approach for the 1D Thirring model

• (Rammelmüller et al. 2017): Complex Langevin for
mass-imbalanced non-relativistic fermions with repulsive
interactions

• World-line formulations solves the sign problem for 1D
systems in several cases (Wiese 1993; Evertz 2003)
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The Hamiltonian: Continuum

Hcontinuum = −
∑
α=↑,↓

∫
dx 1
2mα

ψ†
α∇2ψα + g

∫
dx ψ†

↑ψ↑ψ
†
↓ψ↓ (1)

Parameters:

• Mass-imbalance

m̄ =
m↑ −m↓
m↑ +m↓

, m =
m↑ +m↓

2
(2)

• Coupling:

γ = g/n (3)

where n = N/L is the number density.
• EFG: Fermi-gas energy (mass-balanced).
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The Hamiltonian: Lattice

• Lattice (spatial box size Lx , lattice spacing a):

H = −
∑
α

tα
∑
〈ij〉

(
c†
αicαj + c†

αjcαi − 2cαic
†
αi

)
+ U

∑
i

c↑i†c↑ic↓i†c↓i

(4)

where α = {↑, ↓} is the species label, i is the position
index, and tα = 1

2mαa2 , U = g
a .

• Goal: compute the ground-state energies of Hamiltonian
(4) in the (N↑,N↓) particle sector for general masses
m↑ 6= m↓ with both attractive and repulsive interactions.
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Worldline Formulation

• Traditional auxiliary field MC has positive weights only in
the case of equally populated spin species and equal
masses.

• The world-line formulation (almost) solves the sign
problem for fermions in 1D!

• Sign problems for fermions only arise from boundary
conditions.

• No sign problem in a trap or open boundary conditions.
With periodic boundary conditions a sign problem can
emerge but is mild. (Wiese 1993; Evertz 2003)
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Worldline Formulation

• The partition function:

Z = Tr e−βĤ (5)

= Tr
∑
N

∫ β

0
dt1 · · ·dtN

N∏
k=1

e(tk−tk1 )[
∑

x(2t↑−µ↑)N̂↑x−UN̂↑xN̂↓x]Ĥhop

(6)

=
∑
C
W[C] (7)

where C are world-line configurations
of the particles on a space-time lattice.
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Wordline Formulation : Sign Problem in 1D

• Only nearest neighbor
hops =⇒ fermions
effectively become
hardcore bosons, up to a
sign from cyclic
permutations.

• With periodic boundary
conditions (both space
and time),

Sign[C] = (−1)(Np−1)Nw (8)

• No sign problem for odd
particle numbers!

Sign = +1

x

t

Sign = -1

x

t

Example of how the sign problem
arises in the worldline formulation.
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Worm Algorithm

• Very efficient way to generate uncorrelated configurations.
(Prokof’ev and Svistunov 2001; Adams and
Chandrasekharan 2003; Evertz 2003)

• Chemical potential allows to tune the average number of
particles in the ground state.

Ĥµ = Ĥ− µ1N̂1 − µ2N̂2 (9)

• Extension to higher dimensions is trivial
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Worm Algorithm: Generating Configurations
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Worm Algorithm: Generating Configurations

• Begin/End Updates:

• Bond 2-flips:

• Bond 4-flips:
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Worm Algorithm: Method 1

• At critical µc, for β → ∞, the particle number jumps:
(n1,n2) → (n′1,n′2). Here, we have

E(n1,n2) − µ1n1 − µ2n2 = E(n′1,n′2) − µ1n1 − µ2n2 (10)

=⇒ E(n1,n2) − E(n′1,n′2) = µ1∆n1 + µ2∆n2 (11)

µc

n1+n′1
2

n′1

n1 µ
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Worm Algorithm: Method 1

• We can fit a single parameter µc = ∆E/∆n to the average
particle number close to critical µc:

〈n〉 = n1Z1 + n2Z2
Z1 + Z2

=
g1n1 + g2n2e−β(∆E−µ∆n)

g1 + g2e−β(∆E−µc∆n)
. (12)

(Note that g1,g2 are integers, so we can often fix them.)
• This can be used to get very precise results for the energy
difference between ∆E = En1+1,n2 − En1,n2 .

µc

n1+n′1
2

n′1

n1 µ 13



Worm Algorithm: Method 1 Example
Attractive interaction, N = N↑ + N↓ = 3+ 3, Lx = 40, γ = −3.0
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• Adding all the energy differences up, we get

E(3,3) = −0.08895(5) (13)
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Worm Algorithm: Method 2

• Restrict the particle numbers to a fixed values, and simply
measure the average energy.

〈E〉 = 1
Z
Tr Ĥe−βĤ (14)

=
1
Z
∑
C
E[C]W[C] (15)

E[C] = −
∑
α=↑,↓

Nα
H
β

− 2t(α)Nα
P − U NI

2LT
(16)

where NH = number of hops, NP = number of particles,
NI = number of interactions in each layer.
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Results: Comparison with Complex Langevin [Preliminary!]
Repulsive interaction, 5+5 Particles
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• Disagreement with Complex Langevin for large γ!
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Results: Comparison with iHMC [Preliminary!]
Attractive interaction, 3+3 particles
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• iHMC has a sign problem for repulsive interactions.
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Outlook and Conclusions

• We have a new method to investigate few body physics of
contact interactions in any dimension

• In 1D, the sign problem is under control – relevant for
physics of ultracold gases and trapped atoms

• Exploring ways to solve the sign problems with this
method in higher dimensions – relevant for nuclear
physics

• There seems to be a disagreement with Complex Langevin
results – ongoing investigation
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Thank You!
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