Kaon Matrix Elements from Coarse Lattices

Lattice 2018 Michigan State University July 26, 2018

Robert Mawhinney and Jiqun Tu Columbia University RBC and UKQCD Collaborations

The RBC & UKQCD collaborations

BNL and BNL/RBRC

Yasumichi Aoki (KEK) Mattia Bruno Taku Izubuchi Yong-Chull Jang Chulwoo Jung Christoph Lehner Meifeng Lin Aaron Meyer Hiroshi Ohki Shigemi Ohta (KEK) Amarjit Soni

<u>UC Boulder</u>

Oliver Witzel

<u>Columbia University</u>

Ziyuan Bai Norman Christ Duo Guo Christopher Kelly Bob Mawhinney Masaaki Tomii Jiqun Tu Bigeng Wang Tianle Wang Evan Wickenden Yidi Zhao

University of Connecticut

Tom Blum Dan Hoying (BNL) Luchang Jin (RBRC) Cheng Tu

Edinburgh University

Peter Boyle Guido Cossu Luigi Del Debbio Tadeusz Janowski Richard Kenway Julia Kettle Fionn O'haigan Brian Pendleton Antonin Portelli Tobias Tsang Azusa Yamaguchi

<u>KEK</u>

Julien Frison

University of Liverpool

Nicolas Garron

<u>MIT</u>

David Murphy

Peking University

Xu Feng

University of Southampton

Jonathan Flynn Vera Guelpers James Harrison Andreas Juettner James Richings Chris Sachrajda

Stony Brook University

Jun-Sik Yoo Sergey Syritsyn (RBRC)

York University (Toronto)

Renwick Hudspith

Outline

- We have been generating coarse ensembles (1/a ≈ 1 GeV) with the Iwasaki+DSDR (ID) gauge action with physical pion and kaon masses.
- Ideal testing ground for algorithms and physics measurements
 - * Large physical volumes from modest lattice volumes
 - * Physical u,d and s quark masses.
 - * Easier to study finite volume effects than at weak coupling
 - * With MDWF, no ensemble generation problems from large lattice spacing.
- For many quantities $O(a^2)$ scaling errors have generally been small.
 - * Possibility of accurate continuum limit, with at least two lattice spacings.
 - * Are $O(a^4)$ errors visible or large?
 - * For quantities which are difficult to measure, statistical errors may be more important than scaling errors
- Will report on measurements of kaon matrix elements on these ensembles and their continuum limit.
 - * Relevant to seeking a continuum limit for ϵ'/ϵ

RBC/UKQCD 2+1 Flavor DWF Ensembles

Balancing m_{res} and Topological Tunneling for DWF

• The propagation of light modes between the five-dimensional boundaries is controlled by the eigenvalues of the transfer matrix, H_T

$$H_T = \gamma_5 D_W(M) \frac{1}{2 + (b_i - c_i) D_W(M)}$$

- Zeros of $D_w(M)$ produce modes not bound to the five-dimensional boundaries
- These zeros occur when the gauge fields are changing topology (picture from PRD 77 (2008) 014509)

- Refer to this type of localized fluctuation in the gauge fields as a dislocation.
- For a given L_s , dislocations increase the size of the residual mass, m_{res} .

Choices of Action

- For 1/a in range 1.5 2.5 GeV, Iwasaki gauge action suppresses dislocations sufficiently with 2+1 flavors of fermions to allow physical light quark masses to be reached.
 - * 1/a = 1.73 GeV: L_s = 24 for MDWF (b+c=2) gives m_{res} = 0.45 m_{ud}

* 1/a = 2.31 GeV: L_s = 12 for MDWF (b+c=2) gives m_{res} = 0.32 m_{ud}

• For stronger couplings, add the Dislocation Suppressing Determinant Ratio (DSDR) to suppress topological tunneling

* $1/a = 1.35 \text{ GeV: } L_s = 12 \text{ for MDWF (b+c=32/12) gives } m_{res} = 0.95 m_{ud}$

2+1 Flavor Iwasaki + DSDR (ID) (M)DWF ensembles

- Original DSDR ensemble had 1/a = 1.37(1) GeV, $m_{\pi} = 170$ MeV and $V = (4.7 \text{ fm})^3$
 - * Another ensemble, with G-parity boundary conditions, has been generated for $K \rightarrow \pi\pi$ matrix elements calculations with $m_{\pi} = 143 \text{ MeV}$
- Global fits (chiral and continuum) show small $O(a^2)$ errors for quantities studied for ID ensembles, even at 1/a = 1 GeV.
- We are generating 3 ensembles with 1/a = 1 GeV, physical pions and kaons
 - * 24³: physical volume is $(4.8 \text{ fm})^3$, $m_{\pi}L = 3.4$, currently ~3000 MD time units
 - * 32³: physical volume is $(6.4 \text{ fm})^3$, $m_{\pi}L = 4.5$, currently ~1200 MD time units
 - * 48³: physical volume is $(9.6 \text{ fm})^3$, $m_{\pi}L = 6.7$, currently ~800 MD time units
- We are generating 1 ensemble with 1/a = 1 GeV, physical pions and $m_K \sim 300$ MeV
 - * 32³: physical volume is $(4.8 \text{ fm})^3$, $m_{\pi}L = 3.4$, currently ~800 MD time units
- We are generating 1 ensemble with 1/a = 1.37 GeV, physical pions and kaons
 - * 32³: physical volume is $(4.7 \text{ fm})^3$, $m_{\pi}L = 3.4$, currently ~800 MD time units

SU(2) ChPT Fits to m_{PS} and f_{PS}

• We can simultaneously fit lattice data for different lattice spacings, actions and volumes using expansions of the form (SU(2) NLO example):

$$(m_{ll}^{\mathbf{e}})^{2} = \chi_{l}^{\mathbf{e}} + \chi_{l}^{\mathbf{e}} \cdot \left\{ \frac{16}{f^{2}} \Big((2L_{8}^{(2)} - L_{5}^{(2)}) + 2(2L_{6}^{(2)} - L_{4}^{(2)}) \Big) \chi_{l}^{\mathbf{e}} + \frac{1}{16\pi^{2}f^{2}} \chi_{l}^{\mathbf{e}} \log \frac{\chi_{l}^{\mathbf{e}}}{\Lambda_{\chi}^{2}} \right\}$$
$$f_{ll}^{\mathbf{e}} = f \Big[1 + c_{f}(a^{\mathbf{e}})^{2} \Big] + f \cdot \left\{ \frac{8}{f^{2}} (2L_{4}^{(2)} + L_{5}^{(2)}) \chi_{l}^{\mathbf{e}} - \frac{\chi_{l}^{\mathbf{e}}}{8\pi^{2}f^{2}} \log \frac{\chi_{l}^{\mathbf{e}}}{\Lambda_{\chi}^{2}} \right\}$$

with

$$\chi_l^{\mathbf{e}} = \frac{Z_l^{\mathbf{e}}}{R_a^{\mathbf{e}}} \frac{B^{\mathbf{I}} \widetilde{m}_l^{\mathbf{e}}}{(a^{\mathbf{e}})^2}$$

• At NNLO order, using codes from Bijnens and collaborators, we fit to

$$X(\tilde{m}_q, L, a^2) \simeq X_0 \left(1 + \underbrace{X^{\text{NLO}}(\tilde{m}_q) + X^{\text{NNLO}}(\tilde{m}_q)}_{\text{NNLO Continuum PQChPT}} + \underbrace{\Delta_X^{\text{NLO}}(\tilde{m}_q, L)}_{\text{NLO FV corrections}} + \underbrace{c_X a^2}_{\text{Lattice spacing}} \right)$$

- For SU(2), we use m_{π} , m_{K} and m_{Ω} to set the scale.
- There are different a² corrections to the decay constants for I and ID actions.
- Heavy quark ChPT used for light quark extrapolation of kaon.
- $t_0^{1/2}$ and w_0 are also fit using a linear chiral ansatz.

Scaling Errors for f_{π} and f_{K}

- Fits use different $O(a^2)$ coefficients for Iwasaki and Iwasaki+DSDR actions
- Results for these coefficients from PRD 93 054502 (2016):

	NLO (370 MeV cut)	NNLO (450 MeV cut)
Iwasaki f _π a ² coeff.	$0.059(47) \mathrm{GeV^2}$	$0.065(45) \mathrm{GeV^2}$
DSDR $f_{\pi} a^2$ coeff.	-0.013(17) GeV ²	$0.012(16) \mathrm{GeV^2}$
Iwasaki f _K a ² coeff.	$0.049(39) \mathrm{GeV^2}$	$0.069(36) \mathrm{GeV^2}$
DSDR f _K a ² coeff.	$-0.005(15) \mathrm{GeV^2}$	$0.019(15) \mathrm{GeV^2}$

• For 1/a = 1 GeV, percent scaling error:

	NLO (370 MeV cut)	NNLO (450 MeV cut)
Iwasaki f _π	$6 \pm 5\%$	$7 \pm 5\%$
DSDR f_{π}	-1 ± 2%	$1 \pm 2\%$
Iwasaki f _K	$5 \pm 4\%$	$7 \pm 4\%$
DSDR f _K	-1 ± 2%	$2 \pm 2\%$

- Canonical scaling errors should be $(a\Lambda_{QCD}^{(3)})^2 \sim (330 \text{ MeV}/980 \text{ MeV})^2 \sim 0.11$.
- 2+1 flavor physical quark mass simulations at strong coupling well behaved.

Scaling Errors For More Observables

- We have preliminary fits with more observables, including the $\pi\pi$ I=2 scattering length (David Murphy)
- Show results for SU(2) NNLO fits with pseudoscalar masses below 450 MeV

	Iwasaki a ² coefficient	DSDR a ² coefficient
f _π	0.070±0.041	0.022±0.017
f _K	0.079±0.034	0.030±0.014
$t_0^{1/2}$	-0.017±0.041	-0.021±0.020
w ₀	-0.117±0.360	-0.039±0.018
a_0^2 (I=2 pi-pi scattering)	-0.15±0.33	-0.04±0.45

Omega Baryon Effective Mass on 24³ 1 GeV Ensemble

- Two sources: Coulomb gauge fixed wall source and 8 smaller Coulomb gauge fixed wall sources.
- Fit to common ground and excited states.

B_K from (M)DWF Ensembles

- Combined continuum and chiral fit (global fit) to 2+1 flavor I and ID ensembles
 - * Use m_{π} , m_{K} and m_{Ω} to set the scale and quark masses values for each ensemble
 - * Lattice scales are used to find $Z_{B_{\kappa}}$ to renormalize to SMOM($q, q, \mu=3 \text{ GeV}$)
 - * A combined continuum and chiral fit is then done to $B_K(q, q, \mu=3 \text{ GeV})$
 - Result from Iwasaki ensembles plus the ID ensembles with 1/a = 1.37 GeV. (PRD 91 (2015) 074502)

$$B_{K}(\overline{MS}, \mu=3 \text{ GeV}) = 0.5293 \pm 0.0017_{stat} \pm 0.0150_{sys}$$

- I and ID have separate $O(a^2)$ scaling errors for B_K
 - * For Iwasaki ensembles: $0.125(12) \times a^2$ (a^2 in GeV⁻²)
 - * For ID enesmbles: $0.148(15) \times a^2$
- Get a² scaling coefficient from single ID ensemble by requiring a common continuum limit.
- Is a^2 scaling for B_K justified on ID ensembles even for $1/a \approx 1$ GeV?

a^2 Scaling for B_K from ID (M)DWF Ensembles

- Have measured B_K on 1/a = 1 GeV ID ensemble
 - * NPR done with $\mu_1 = 1.4363$, $\mu = 3.0$ GeV.
 - * Step scaling to connect (μ_1, μ) .
- Have also remeasured B_K on 1/a = 1.35 GeV ensemble
 - * AMA plus EigCG deflation markedly reduces statistical errors
- Updated global fit show similar a^2 coeffecients with smaller statistical errors.

	ChPTFV	$\mathrm{ChPTFV}[3]$
$\chi^2/{ m dof}$	0.50(34)	—
B_K^{phys}	0.5350(18)	0.5341(18)
B_K^0	0.5282(17)	0.5278(16)
$c^{\rm I}_{B_K,a^2}$	0.114(11)	0.128(12)
$c^{\rm ID}_{B_K,a^2}$	0.1262(72)	0.153(15)
c_{B_K,m_l}	-0.0075(10)	-0.00728(95)
c_{B_K,m_x}	0.00439(66)	0.00420(64)
c_{B_K,m_h}	-0.09(18)	-0.06(18)
c_{B_K,m_y}	1.218(29)	1.324(32)

a^2 Scaling for B_K from Iwasaki (M)DWF Ensembles

a² Scaling for B_K from Iwasaki+DSDR (M)DWF Ensembles

a^2 Scaling for B_K

$\Delta I = 3/2 \text{ K} \rightarrow \pi \pi \text{ Matrix Elements from Iwasaki (M)DWF}$

• RBC-UKQCD has calculated $Re(A_2)$ and $Im(A_2)$ on Iwasaki ensembles with 1/a = 1.73 and 2.35 GeV and taken the continuum limit. PRD 91 (2015) 074502

	m_{π}	m_K	$E_{\pi\pi}$	$m_K - E_{\pi\pi}$
48^3 (lattice units)	$8.050(13) \times 10^{-2}$	$2.8867(15) \times 10^{-1}$	$2.873(13) \times 10^{-1}$	$1.4(14) \times 10^{-3}$
64^3 (lattice units)	$5.904(14) \times 10^{-2}$	$2.1531(14) \times 10^{-1}$	$2.1512(68) \times 10^{-1}$	$9(10) \times 10^{-4}$
$48^3 ({\rm MeV})$	139.1(2)	498.82(26)	496.5(16)	2.4(24)
$64^3 (MeV)$	139.2(3)	507.4(4)	507.0(16)	2.1(26)

$\Delta I = 3/2 \text{ K} \rightarrow \pi \pi$ Matrix Elements from ID ensembles

- Measured on 1/a = 1 GeV ensembles
 - * NPR done with $\mu_1 = 1.4363$, $\mu = 3.0$ GeV.
 - * Step scaling to connect (μ_1, μ) .
- 2 calculations done, one with 2 anti-periodic spatial directions and the other with 3.
- Can extrapolate to physical kinematics

Correcting for kinematics for $\Delta I = 3/2$ K $\rightarrow \pi\pi$ Matrix Elements

• For 1/a = 1 GeV ID ensembles, interpolate to physical kinematics

n_{tw}	am_K	$aE_{\pi\pi}^{I=2}$	${ m Re}[A_2][10^{-8} { m GeV}]$	$Im[A_2][10^{-13} \text{ GeV}]$
3	0.50425(49)	0.5634(40)	$1.7125(68)_{\rm stat.}(575)_{\rm NPR}$	$-5.27(15)_{\text{stat.}}(41)_{\text{NPR}}$
2	0.50425(49)	0.4768(17)	$1.4206(57)_{\rm stat.}(476)_{\rm NPR}$	$-5.98(16)_{\rm stat.}(45)_{\rm NPR}$
0	0.50425(49)	0.28221(70)	$0.7132(39)_{\rm stat.}(233)_{\rm NPR}$	$-8.32(20)_{\rm stat.}(58)_{\rm NPR}$
*	0.50425(49)	am_K	$1.5079(80)_{\rm stat.}(505)_{\rm NPR}$	$-5.77(13)_{\rm stat.}(43)_{\rm NPR}$

Table 3: NPR is done in $\overline{\text{MS}}$, (\not{q}, \not{q}) scheme and $\mu = 3$ GeV. $a^{-1} = 1.0083$ GeV. The NPR error is taken as the difference between (\not{q}, \not{q}) and $(\gamma_{\mu}, \gamma_{\mu})$ scheme. * is the result from linear extrapolation in $E_{\pi\pi}^2$ to physical kinematics.

• Previous 1/a = 1.35 GeV ID ensemble result (PRD 86 (2012) 074513).

 $\operatorname{Re}A_2 = 1.381(46)_{\operatorname{stat}}(258)_{\operatorname{syst}} 10^{-8} \,\operatorname{GeV}, \quad \operatorname{Im}A_2 = -6.54(46)_{\operatorname{stat}}(120)_{\operatorname{syst}} 10^{-13} \,\operatorname{GeV}.$

units	m_{π}	m _K	$E_{\pi,2}$	$E_{\pi\pi,0}$	$E_{\pi\pi,2}$	$m_K - E_{\pi\pi,2}$
lattice	0.10421(22)	0.37066(68)	0.17386(91)	0.21002(43)	0.3560(23)	0.0146(23)
MeV	142.11(94)	505.5(3.4)	237.1(1.8)	286.4(1.9)	485.5(4.2)	20.0(3.1)

Scaling for $Re(A_2)$ on Iwasaki+DSDR Ensembles

• Only statistical errors plotted, not errors in conversion from RI-SMOM to \overline{MS}

Scaling for $Im(A_2)$ on Iwasaki+DSDR Ensembles

• Only statistical errors plotted, not errors in conversion from RI-SMOM to \overline{MS}

Scaling of Local Vector Current Matrix Elements

- HVP and HLBL measured on these ensembles, as part of RBC effort on this quantity
 - * Useful for determining finite volume effects present on weaker coupling Iwasaki ensembles
- Two different values for Z_V have been measured
 - * From charge of pion: $Z_v^{\pi} = 0.72672$
 - * From ratio of local to conserved current: $Z_V^{lc} = 0.6333$
- HVP on 1 GeV ensembles agrees with Iwasaki ensemble results using Z_V^{lc}
- HLBL gives better agreement with weak coupling with Z_v^{π}
- Appears to be large scaling error.

Scaling of Operators versus Masses

- Christoph Lehner has used the phase shift from the I=1 spectrum on the 32ID physical ensemble and the Gounaris-Sakurai model to predict the spectrum and matrix elements on the 24 ID model.
- Good agreement for the energies of the lowest 3 states

	Measured on 24ID	Predicted from 32ID
E_0	0.5746(7)	0.577(2)
E_1	0.716(3)	0.718(8)
E_2	0.841(9)	0.846(7)

• Matrix elements of the local vector current show 10-20% differences, attributed to scaling errors

Amplitudes $c_n = \langle 0 V_i^{\text{loc}} n \rangle$					
	Measured on 24ID	Pred.fr. 32ID w/ $Z_V^{ m lc}$	Pred.fr. 32ID w/ Z_V^{π}		
<i>c</i> ₀	0.0524(7)	0.052(3)	0.045(3)		
<i>C</i> ₁	0.123(2)	0.118(9)	0.103(9)		
<i>C</i> ₂	$c_2 = 0.120(6) = 0.09(1) = 0.08(1)$				
Lower states prefer $Z_V^{ m lc}$ but in general $O(10\%-20\%)$					
discretization errors on coefficients possible.					

Conclusions

- B_K accurately measured on coarse ID ensembles and shows only $O(a^2)$ errors for lattice spacings $\ge 1 \text{ GeV}^{-1}$
- $\operatorname{Re}(A_2)$ and $\operatorname{Im}(A_2)$ well fit with a^2 term to lattice spacings $\geq 1 \text{ GeV}^{-1}$
 - * Measurement of corrections from unphysical kinematics done on coarse lattices
 - * Important correction for scaling plot.
- Coupling of local vector current to I=1 states shows 10-20% discretization errors in vacuum ot I=1 matrix elements.
- Spectrum has (so far) not shown any large scaling errors.
- In terms of Symanzik improvement, our results to date are consistent with the ID ensembles having
 - * Very small $O(a^2)$ errors in the action
 - * Possible canonically sized (10-20%) $O(a^2)$ errors for matrix elements.
- These are empirical results. There is no theorem of systematic $O(a^2)$ improvement in the action.