
1

Robert Mawhinney and Jiqun Tu
Columbia University

RBC and UKQCD Collaborations

Kaon Matrix Elements from Coarse Lattices

Lattice 2018
Michigan State University

July 26, 2018



2
  

The RBC & UKQCD collaborations

BNL and BNL/RBRC

Ziyuan Bai
Norman Christ
Duo Guo
Christopher Kelly
Bob Mawhinney
Masaaki Tomii
Jiqun Tu
Bigeng Wang

University of Connecticut

Peter Boyle
Guido Cossu
Luigi Del Debbio
Tadeusz Janowski
Richard Kenway
Julia Kettle
Fionn O'haigan
Brian Pendleton
Antonin Portelli
Tobias Tsang
Azusa Yamaguchi

Nicolas Garron

Jonathan Flynn
Vera Guelpers
James Harrison
Andreas Juettner
James Richings
Chris Sachrajda

Julien Frison

Xu Feng

Tianle Wang
Evan Wickenden
Yidi Zhao 

UC Boulder

Renwick Hudspith

Yasumichi Aoki (KEK)
Mattia Bruno
Taku Izubuchi
Yong-Chull Jang
Chulwoo Jung
Christoph Lehner
Meifeng Lin
Aaron Meyer
Hiroshi Ohki
Shigemi Ohta (KEK)
Amarjit Soni

Oliver Witzel

Columbia University

Tom Blum
Dan Hoying (BNL)
Luchang Jin (RBRC)
Cheng Tu

Edinburgh University

York University (Toronto)

University of Southampton

Peking University

University of Liverpool

KEK

Stony Brook University

Jun-Sik Yoo
Sergey Syritsyn (RBRC)

MIT

David Murphy



3

Outline
• We have been generating coarse ensembles (1/a ≈ 1 GeV) with the Iwasaki+DSDR 

(ID) gauge action with physical pion and kaon masses.

• Ideal testing ground for algorithms and physics measurements

* Large physical volumes from modest lattice volumes

* Physical u,d and s quark masses.

* Easier to study finite volume effects than at weak coupling

* With MDWF, no ensemble generation problems from large lattice spacing.

• For many quantities O(a2) scaling errors have generally been small.

* Possibility of accurate continuum limit, with at least two lattice spacings.

* Are O(a4 ) errors visible or large?

* For quantities which are difficult to measure, statistical errors may be more 
important than scaling errors

• Will report on measurements of kaon matrix elements on these ensembles and their 
continuum limit.

* Relevant to seeking a continuum limit for ε'/ε
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Balancing mres and Topological Tunneling for DWF
• The propagation of light modes between the five-dimensional boundaries is controlled 

by the eigenvalues of the transfer matrix, HT 
          

                                                  ( )
( ) ( )

H D M
b c D M2
1

T W
i i W

5c= + -
 

                                 

• Zeros of Dw(M) produce modes not bound to the five-dimensional boundaries

• These zeros occur when the gauge fields are changing topology (picture from PRD 77 
(2008) 014509) 

                                                     

• Refer to this type of localized fluctuation in the gauge fields as a dislocation.

• For a given Ls, dislocations increase the size of the residual mass, mres.
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Choices of Action
• For 1/a in range 1.5 - 2.5 GeV, Iwasaki gauge action suppresses dislocations suf-

ficiently with 2+1 flavors of fermions to allow physical light quark masses to be 
reached.

* 1/a = 1.73 GeV:  Ls = 24 for MDWF (b+c=2) gives mres = 0.45 mud

* 1/a = 2.31 GeV:  Ls = 12 for MDWF (b+c=2) gives mres = 0.32 mud

• For stronger couplings, add the Dislocation Suppressing Determinant Ratio (DSDR) 
to suppress topological tunneling 
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* 1/a = 1.35 GeV:  Ls = 12 for MDWF (b+c=32/12) gives mres = 0.95 mud

choose 
M  = -M5
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2+1 Flavor Iwasaki + DSDR (ID) (M)DWF ensembles
• Original DSDR ensemble had 1/a = 1.37(1) GeV, mπ = 170 MeV and V = (4.7 fm)3

* Another ensemble, with G-parity boundary conditions, has been generated for 
K –› ππ matrix elements calculations with mπ = 143 MeV

• Global fits (chiral and continuum) show small O(a2) errors for quantities studied for 
ID ensembles, even at 1/a = 1 GeV.

• We are generating 3 ensembles with 1/a = 1 GeV, physical pions and kaons

* 243:  physical volume is (4.8 fm)3, mπL = 3.4, currently ~3000 MD time units

* 323:  physical volume is (6.4 fm)3, mπL = 4.5, currently ~1200 MD time units

* 483:  physical volume is (9.6 fm)3, mπL = 6.7, currently ~800 MD time units

• We are generating 1 ensemble with 1/a = 1 GeV, physical pions and mK ~ 300 MeV

* 323:  physical volume is (4.8 fm)3, mπL = 3.4, currently ~800 MD time units

• We are generating 1 ensemble with 1/a = 1.37 GeV, physical pions and kaons

* 323:  physical volume is (4.7 fm)3, mπL = 3.4, currently ~800 MD time units
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SU(2) ChPT Fits to mPS and fPS

• We can simultaneously fit lattice data for different lattice spacings, actions and vol-
umes using expansions of the form (SU(2) NLO example): 

        

55

Given the definition of a scaling trajectory, the variation of the quantity χel needed to apply Eq. (38)

to the ensemble e is actually trivial. Because our choice of quark mass m̃el gives the same value for

mll for each ensemble e on our scaling trajectory, all of the quantities in Eq. (38) with the possible

exception of the χel which we are now considering, are the same when expressed in physical units

for all points on the scaling trajectory. Thus, χel = 2Bem̃el /(ae)2 must be a constant as well, where

Be and m̃el are explicitly left in lattice units. Since we know how the quantities m̃l and a2 are related

between an ensemble e and our primary ensemble 1, we can determine the N−1 constants Be in

terms of the single constant B1:

Be =
Zel
Rea
B1 (40)

without any a2 corrections. Because of the complex scaling behavior of the mass, we will treat

B1 as one of the LEC’s to be determined in our fitting and not relate it to a “physical” continuum

quantity whose definition would require introducing a continuum mass renormalization scheme.

We conclude that our lattice results for light pseudoscalar masses and decay constants obtained

from a series of ensembles {e} can be described through NLO by the formulae:

(mell)
2 = χel + χel ·

{
16
f 2

(
(2L(2)

8 −L(2)
5 )+2(2L(2)

6 −L(2)
4 )

)
χel +

1
16π2 f 2

χel log
χel
Λ2χ

}

(41)

f ell = f
[
1+ c f (ae)2

]
+ f ·

{
8
f 2

(2L(2)
4 +L(2)

5 )χel −
χel

8π2 f 2
log

χel
Λ2χ

}

(42)

with

χel =
Zel
Rea

B1m̃el
(ae)2

(43)

where all quantities in Eqs. (41) and (42) are expressed in physical units (except for B1 and m̃el in

Eq. (43) which are given in lattice units).

Two important refinements should be mentioned. First, for the case of a physical scaling trajectory,

i.e. one which terminates in the physical masses mπ , mK and mΩ, these physical units are naturally

GeV. However, for other scaling trajectories appropriate “physical” units to use can be those in

which the Omega mass is unity. Second, for simplicity in Eqs. (38), (39), (41) and (42) we have

treated the heavy quark mass as fixed and not displayed the dependence of the quantities f , B,

L4, L5, L6 and L8 on mh. In practice we can easily generalize these equations to describe the

dependence of mll and fll on mh as well. Provided we limit the variation of mh to a small range

about an expansion point m̃h0, this variation can be described by including a linear term inmh−m̃h0
and treating this term as NLO in our power counting scheme. Thus, such extra linear terms will

• At NNLO order, using codes from Bijnens and collaborators, we fit to 

          

allowing us to ultimately take the continuum limit a ! 0. All fits are performed in the bare, dimensionless

lattice units of a single reference ensemble, which we choose to be our 323 ⇥ 64 Iwasaki (32I) lattice (Table

2). We introduce additional fit parameters

R

e

a

⌘ a

r

a

e

, Z

e

l

⌘ 1

R

e

a

(am̃
l

)
r

(am̃
l

)
e

, Z

e

h

⌘ 1

R

e

a

(am̃
h

)
r

(am̃
h

)
e

(8)

to convert between bare lattice units on the reference ensemble r and other ensembles e, where a is the

lattice spacing and m̃

q

= m

q

+mres is the total quark mass5.

The chiral ansätze discussed above reflect a simultaneous expansion in the quark masses, lattice volume

(L), and lattice spacing (a), about the infinite volume, continuum, chiral limit. Our power-counting scheme

counts the dominant discretization term — which is proportional to a

2 for domain wall fermions — as

O(p4). While we include continuum PQChPT terms up to O(p6) in our NNLO fits, cross terms proportional

to X

NLO ⇥NLO
X

and X

NLO ⇥ a

2 are neglected since they are higher-order in our power-counting, and are

empirically observed to be small. The full chiral ansatz for X 2 {m2
⇡

, f

⇡

}, for example, including the finite

volume and a

2 terms, has the generic form

X(m̃
q

, L, a

2) ' X0

�

1 +X

NLO(m̃
q

) +X

NNLO(m̃
q

)
| {z }

NNLO Continuum PQChPT

+ NLO
X

(m̃
q

, L)
| {z }

NLO FV corrections

+ c

X

a

2

| {z }

Lattice spacing

�

(9)

where X0 is the value of X in the chiral, continuum, and infinite-volume limit, and “'” denotes equality up

to truncation of higher order terms. The NLO SU(2) ansätze are written in complete detail in Appendix H

of Ref. [8]; the generalization to NNLO is straightforward. Appendix B of the same reference also discusses

how to write a given chiral ansatz in our dimensionless formalism.

The procedure for performing a global fit is as follows:

1. The valence quark mass dependence of mres is fit to a linear ansatz on each ensemble. We then

extrapolate mres to the chiral limit m
q

! 0, and use this value in the remainder of the analysis.

2. A simultaneous chiral/continuum fit of m2
⇡

, m2
K

, f
⇡

, f
K

, m⌦, t
1/2
0 and w0 is performed on all ensembles

using the ansätze described in the preceding paragraph. The quark mass dependence is parametrized

in terms of m̃
q

= m

q

+mres. This step also determines the ratios of lattice scales R

e

a

and Z

e

{l,h} and

the dependence on a

2.

3. Three of the quantities from 2 are defined to have no a

2 corrections and establish our continuum scaling

trajectory by matching onto their known, physical values6. In the analysis of [8] we have used m

⇡

, m
K

,

and m⌦, and implemented this condition by numerically inverting the chiral fit to determine input bare

valence quark masses m

phys
l

and m

phys
h

such that the ratios m

⇡

/m⌦ and m

K

/m⌦ take their physical

values.

5In the domain wall fermion formalism a finite fifth dimension introduces a small chiral symmetry breaking, leading to an
additive renormalization of the input quark masses by mres (the residual mass). In Section 4.2 we briefly discuss how mres is
extracted.

6For reference, our values for the “physical”, isospin symmetric masses and decay constants, excluding QED e↵ects, are:

mphys
⇡

= 135.0MeV (PDG ⇡0 mass), mphys
K

= 495.7MeV (average of the PDG K0 and K± masses), mphys
⌦ = 1672.45MeV

(PDG ⌦ mass), fphys
⇡

= 130.7MeV (PDG ⇡ decay constant), and fphys
K

= 156.1MeV (PDG K decay constant) [26].
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• For SU(2), we use mπ, mK and m� to set the scale.

• There are different a 2 corrections to the decay constants for I and ID actions.

• Heavy quark ChPT used for light quark extrapolation of kaon.

• t 0
1/2 and w0 are also fit using a linear chiral ansatz.
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Scaling Errors for fπ and fK
• Fits use different O(a2) coefficients for  Iwasaki and Iwasaki+DSDR actions

• Results for these coefficients from PRD 93 054502 (2016):

NLO (370 MeV cut) NNLO (450 MeV cut)
Iwasaki fπ a2 coeff. 0.059(47) GeV2 0.065(45) GeV2

DSDR fπ a2 coeff. -0.013(17) GeV2 0.012(16) GeV2

Iwasaki fK a2 coeff. 0.049(39) GeV2 0.069(36) GeV2

DSDR fK a2 coeff. -0.005(15) GeV2 0.019(15) GeV2

• For 1/a = 1 GeV, percent scaling error: 

NLO (370 MeV cut) NNLO (450 MeV cut)
Iwasaki fπ 6 ± 5% 7 ± 5%
DSDR fπ -1 ± 2% 1 ± 2%

Iwasaki fK 5 ± 4% 7 ± 4%
DSDR fK -1 ± 2% 2 ± 2%

• Canonical scaling errors should be ~ / ~ .a 330 980 0 11MeV MeV( )
QCD
3 2 2K^ ^h h .

• 2+1 flavor physical quark mass simulations at strong coupling well behaved.
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Scaling Errors For More Observables

• We have preliminary fits with more observables, including the ππ I=2 scattering 
length (David Murphy)

• Show results for SU(2) NNLO fits with pseudoscalar masses below 450 MeV 

Iwasaki a2 coefficient DSDR a2 coefficient

fπ 0.070±0.041 0.022±0.017

fK 0.079±0.034 0.030±0.014

t0
1/2 -0.017±0.041 -0.021±0.020

w0 -0.117±0.360 -0.039±0.018

a0
2 (I=2 pi-pi scattering) -0.15±0.33 -0.04±0.45
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Omega Baryon Effective Mass on 243 1 GeV Ensemble

• Two sources:  Coulomb gauge fixed wall source and 8 smaller Coulomb gauge fixed 
wall sources.

• Fit to common ground and excited states.Figure 4: Kaon

Figure 5: ⌦ baryon

5
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BK from (M)DWF Ensembles
• Combined continuum and chiral fit (global fit) to 2+1 flavor I and ID ensembles

* Use mπ, mK and m� to set the scale and quark masses values for each ensemble

* Lattice scales are used to find ZBK
 to renormalize to SMOM(q/ ,q/,μ=3 GeV)

* A combined continuum and chiral fit is then done to BK(q/ ,q/,μ=3 GeV)

* Result from Iwasaki ensembles plus the ID ensembles with 1/a = 1.37 GeV. 
(PRD 91 (2015) 074502) 
 
   BK(MS, μ=3 GeV) = 0.5293 ± 0.0017stat ± 0.0150sys

• I and ID have separate O(a2) scaling errors for BK

* For Iwasaki ensembles:  0.125(12) × a2 (a2 in GeV-2)

* For ID enesmbles:  0.148(15) × a2

• Get a2 scaling coefficient from single ID ensemble by requiring a common continuum 
limit.

• Is a2 scaling for BK justified on ID ensembles even for 1/a ≈ 1 GeV?
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a2 Scaling for BK from ID (M)DWF Ensembles
• Have measured BK on 1/a = 1 GeV ID ensemble

* NPR done with μ1 = 1.4363, μ = 3.0 GeV.

* Step scaling to connect (μ1, μ).

• Have also remeasured BK on 1/a = 1.35 GeV ensemble

* AMA plus EigCG deflation markedly reduces statistical errors

• Updated global fit show similar a2 coeffecients with smaller statistical errors.
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BK

χ2/ 0.55(36) −

B0
K 0.5280(18) 0.5278(16)

cBK ,a2 0.115(11) 0.128(12)

cBK ,a2 0.131(11) 0.153(15)

cBK ,ml
−0.00720(90) −0.00728(95)

cBK ,mx 0.00399(54) 0.00420(64)

cBK ,mh
−0.11(17) −0.06(18)

cBK ,my
1.290(26) 1.324(32)
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a2 Scaling for BK from Iwasaki+DSDR (M)DWF Ensembles
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ΔI = 3/2 K –›ππ Matrix Elements from Iwasaki (M)DWF

• RBC-UKQCD has calculated Re(A2) and Im(A2) on Iwasaki ensembles with 1/a = 
1.73 and 2.35 GeV and taken the continuum limit. PRD 91 (2015) 074502 

5

mπ mK Eππ mK − Eππ

483 (lattice units) 8.050(13)× 10−2 2.8867(15)× 10−1 2.873(13)× 10−1 1.4(14)× 10−3

643 (lattice units) 5.904(14)× 10−2 2.1531(14)× 10−1 2.1512(68)× 10−1 9(10)× 10−4

483 (MeV) 139.1(2) 498.82(26) 496.5(16) 2.4(24)

643 (MeV) 139.2(3) 507.4(4) 507.0(16) 2.1(26)

TABLE I: Pion and kaon masses and the I=2 two-pion energies in lattice and physical
units measured on the 483 and 643 ensembles. The momentum of each of the final-state

pions is ±π/L in each of the three spatial directions.

inexact solves for which the correction is calculated, this complete pattern of source time

slices for the accurate solves was shifted by a different random time displacement on each

configuration. A similar procedure was used on the 643 ensemble but with 1500 low modes

and a stopping residual of 10−5 for the approximate solves and accurate solves on time slices

0, 103, 98, 93, 88, 83, 78 and 73. On both ensembles, the accurate CG solves were also com-

puted using eigCG, exploiting the approximate eigenvectors created during the inaccurate

applications of eigCG.

Measurements on the 483 and 643 ensembles are separated by 20 and 40 molecular dy-

namics (MD) units respectively. In order to study the effects of autocorrelations we bin the

data. We find that the effects are small, typically leading to a variation of the statistical

errors of less than 10%. The results presented below were obtained after binning the 76

configurations of the 483 ensemble into 19 bins of 4 configurations and the 40 configurations

of the 643 ensemble into 8 bins of 5 configurations. The 40 configurations from the 643 en-

semble are precisely those used in the global analysis reported in [7]. The 76 configurations

from the 483 ensemble include 73 of the 80 used in [7]. We have however, repeated the

relevant analysis of [7], including the determination of the lattice spacings, using precisely

the 76 configurations for which we have computed A2. This makes it possible to compute

standard jackknife errors for our physical results which necessarily depend upon the value

of the lattice spacing.

The pion (mπ) and kaon masses (mK) as well as the energies of the I = 2 two-pion state

(Eππ) obtained on the two ensembles are shown in Table I. The fitting ranges used for pion

and kaon masses as well as two pion energies were from 10 to 86 on the 483 ensemble and

from 10 to 118 on the 643 ensemble. These choices were motivated by the plateaus in the

effective mass plots shown in Figs. 1 - 2. The effective mass of the kaon, meff
K , is defined

33
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FIG. 9: The continuum extrapolation of Re(A2) (left) and Im(A2) (right). The points at
finite lattice spacing are taken from Tab. III for the (/q, /q) intermediate renormalization

scheme.

Ansatz Re(A2) (×10−8 GeV) Im(A2) (×10−13 GeV)

ChPTFV 1.501(39) -6.99(20)

ChPT 1.494(38) -6.96(19)

analytic 1.494(43) -6.96(21)

TABLE XII: The continuum values of Re(A2) and Im(A2) determined using the lattice
spacings obtained with each of the three chiral Ansätze.

hence we set the chiral error to zero. On the other hand the jackknife differences between

the ChPTFV and ChPT Ansätze are resolvable as they differ only in small Bessel function

corrections and are thus highly correlated: we obtain 3.4(1.0)× 10−11 and 1.59(47)× 10−15

for the real and imaginary parts respectively. Nevertheless, these errors are only 5%–8% of

the statistical error and can therefore also be neglected. This leads to the result

Re(A2) = 1.501(39)× 10−8 GeV and Im(A2) = −6.99(20)× 10−13 GeV , (63)

where the errors are statistical.

Our final result for A2 is obtained by assigning the 9% and 12% systematic errors from

Tables IX and X as the systematic errors to be associated with the values for Re(A2) and

Im(A2) given in Eq. (63):

Re(A2) = 1.50(4)stat(14)syst × 10−8 GeV; Im(A2) = −6.99(20)stat(84)syst × 10−13 GeV .

(64)
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ΔI = 3/2 K –›ππ Matrix Elements from ID ensembles
• Measured on 1/a = 1 GeV ensembles

* NPR done with μ1 = 1.4363, μ = 3.0 GeV.

* Step scaling to connect (μ1, μ).

• 2 calculations done, one with 2 anti-periodic spatial directions and the other with 3.

• Can extrapolate to physical kinematics
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K → ππ

M

→ ntw = 3

(27, 1) 0.000924(20) 2.15

(8, 8) 0.00944(20) 2.13

(8, 8) 0.03257(69) 2.12

→ ntw = 2

(27, 1) 0.0008595(49) 0.56

(8, 8) 0.011594(58) 0.50

(8, 8) 0.03909(20) 0.51

→ ntw = 0

(27, 1) 0.0007372(20) 0.27

(8, 8) 0.025405(81) 0.32

(8, 8) 0.08211(26) 0.32

χ2/ 0.37(17)

ntw amK aEI=2
ππ [A2][10

−8 ] [A2][10
−13 ]

3 0.50425(49) 0.5634(40) 1.7125(68) .(575) −5.27(15) .(41)

2 0.50425(49) 0.4768(17) 1.4206(57) .(476) −5.98(16) .(45)

0 0.50425(49) 0.28221(70) 0.7132(39) .(233) −8.32(20) .(58)

∗ 0.50425(49) amK 1.5079(80) .(505) −5.77(13) .(43)

(/q, /q) µ = 3 a−1 = 1.0083

(/q, /q) (γµ, γµ) ∗ E2
ππ

Correcting for kinematics for ΔI = 3/2 K –›ππ Matrix Elements
• For 1/a = 1 GeV ID ensembles, interpolate to physical kinematics

• Previous 1/a = 1.35 GeV ID ensemble result (PRD 86 (2012) 074513). 

2

I. INTRODUCTION

It was in K ! pp decays that both indirect [2] and direct [3–6] CP-violation was first dis-

covered and a quantitative understanding of the origin of CP-violation, both within and beyond

the Standard Model, remains one of the principal goals of particle physics research. Lattice

QCD provides the opportunity of computing the non-perturbative QCD effects in general and

in hadronic CP-violating processes in particular. The evaluation of these effects in K ! pp

decays is an important element in the research programme of the RBC-UKQCD collaboration

and in this paper we report on the evaluation of the (complex) decay amplitude A2, correspond-

ing to the decay in which the two-pion final state has isospin 2. This is the first realistic ab

initio calculation of a weak hadronic decay. Our final result can be found in Eq. (25), which we

reproduce here for the reader’s convenience:

ReA2 = 1.381(46)stat(258)syst 10−8 GeV, ImA2 =−6.54(46)stat(120) syst10−13 GeV . (1)

This is an update of the result presented recently in Ref. [1] with greater statistics (146 config-

urations compared to 63 in [1]). More importantly, in this paper we present the details of the

calculation and the analysis which could not be presented in the original letter [1]. For Re A2 we

find good agreement with the known experimental value (1.479(4)⇥10−8 GeV obtained from

K+ decays), whereas the value of Im A2 was previously unknown.

This is the first quantitative calculation of an amplitude for a realistic hadronic weak de-

cay and hence extends the framework of lattice simulations into the important domain of non-

leptonic weak decays. To reach this point has required very significant theoretical developments

and technical progress. These are discussed in the following sections and include:

1. the control of pp rescattering effects and finite-volume corrections when two hadrons are

present in the final state;

2. the use of carefully devised boundary conditions to tune the volume so that the decay can

be simulated at physical kinematics;

3. the development of techniques for non-perturbative renormalization which has made it
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(a) Effective mass plot for the pion

0 10 20 30 40 50 600

0.2

0.4

0.6

0.8

1

t

(b) Effective mass plot for the kaon

FIG. 2: Effective mass plots for the pion and kaon. Results for mp and mK obtained from the fits of the

correlation functions to Eq. (12) are shown as the horizontal lines in each plot.

units mp mK Ep,2 Epp,0 Epp,2 mK −Epp,2

lattice 0.10421(22) 0.37066(68) 0.17386(91) 0.21002(43) 0.3560(23) 0.0146(23)

MeV 142.11(94) 505.5(3.4) 237.1(1.8) 286.4(1.9) 485.5(4.2) 20.0(3.1)

TABLE I: Results for meson masses and energies. The subscripts 0, 2 denote p = 0 and p =
p

2p/L

respectively, where p = |p|.

become noisier when the pion has a non-zero momentum, we now fit over the time interval

t = [5,35] where we can neglect the contribution from the backward propagating pion and use

the form,

Cp(t, p =
p

2p/L) = |Zp(p =
p

2p/L)|2e−Ep t
, (13)

where p= |p| and Ep is the corresponding energy. The value Ep,2 = 0.17386(91) obtained from

the fit (see Tab. I) is nicely consistent with the (continuum) dispersion relation for a pion with

mass 0.10421(22). The subscript 2 in Ep,2 indicates that the momentum of the pion is
p

2p/L,

i.e. that anti-periodic boundary conditions have been imposed on the d quark in two directions.

Next we consider the two-pion correlation function which has a larger statistical error. Hav-

ing suppressed the around-the-world contributions by combining propagators with periodic and

antiperiodic boundary conditions in time and neglecting the contributions from excited states,
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Scaling for Re(A2) on Iwasaki+DSDR Ensembles
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• Only statistical errors plotted, not errors in conversion from RI-SMOM to MS
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Scaling for Im(A2) on Iwasaki+DSDR Ensembles
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Scaling of Local Vector Current Matrix Elements
• HVP and HLBL measured on these ensembles, as part of RBC effort on this quantity

* Useful for determining finite volume effects present on weaker coupling Iwasaki 
ensembles

• Two different values for ZV have been measured

* From charge of pion:  Zv
π = 0.72672

* From ratio of local to conserved current:  ZV
lc = 0.6333

• HVP on 1 GeV ensembles agrees with Iwasaki ensemble results using ZV
lc

• HLBL gives better agreement with weak coupling with Zv
π

• Appears to be large scaling error. 
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Scaling of Operators versus Masses

• Christoph Lehner has used the phase shift from the I=1 spectrum on the 32ID physi-
cal ensemble and the Gounaris-Sakurai model to predict the spectrum and matrix ele-
ments on the 24 ID model.

• Good agreement for the energies of the lowest 3 states 
 

                       

Di↵erent ZV on 24ID/32ID ensembles:

Z
⇡
V = 0.72672 , Z

lc
V = 0.6333 , (1)

where the former is from pion charge and latter from local-local
versus local-conserved.
Measure I=1 spectrum on 32ID (6.2fm box, 5 operator GEVP),
parametrize phase shift using gounaris sakurai and then predict
spectrum and amplitudes on 24ID; this predicts the properly
normalized amplitudes and we use di↵erent ZV to turn this into
bare local vector predictions.

Measured on 24ID Predicted from 32ID

E0 0.5746(7) 0.577(2)
E1 0.716(3) 0.718(8)
E2 0.841(9) 0.846(7)

1 / 2

• Matrix elements of the local vector current show 10-20% differences, attributed to 
scaling errors 
 

            

Amplitudes cn = h0|V loc
i |ni

Measured on 24ID Pred.fr. 32ID w/ Z
lc
V Pred.fr. 32ID w/Z⇡

V

c0 0.0524(7) 0.052(3) 0.045(3)
c1 0.123(2) 0.118(9) 0.103(9)
c2 0.120(6) 0.09(1) 0.08(1)

Lower states prefer Z lc
V but in general O(10% 20%)

discretization errors on coecients possible.

2 / 2
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Conclusions
• BK accurately measured on coarse ID ensembles and shows only O(a2) errors for 

lattice spacings ≥ 1 GeV-1

• Re(A 2) and Im(A2) well fit with a2 term to lattice spacings ≥ 1 GeV-1

* Measurement of corrections from unphysical kinematics done on coarse lattices

* Important correction for scaling plot.

• Coupling of local vector current to I=1 states shows 10-20% discretization errors in  
vacuum ot I=1 matrix elements.

• Spectrum has (so far) not shown any large scaling errors.

• In terms of Symanzik improvement, our results to date are consistent with the ID en-
sembles having

* Very small O(a2) errors in the action

* Possible canonically sized (10-20%) O(a2) errors for matrix elements.

• These are empirical results.  There is no theorem of systematic O(a2) improvement in 
the action.


